Skip to main content

Advertisement

Log in

Depolymerization of the actin cytoskeleton induces defense responses in tobacco plants

  • Fungal Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Tobacco leaf sections were treated with actin inhibitors, i.e., cytochalasins, to determine the effects of actin depolymerization on tobacco defense responses. Inoculation of the leaf sections with the pathogen Erysiphe cichoracearum, depolymerized the actin cytoskeleton, priming the cells for a hypersensitive response-like cell death. Further, expression of the acidic PR1 and PR2 genes were induced in cytochalasin-treated leaf sections. The intensity of the cytochalasin effects on the defense responses was closely correlated with the extent of actin depolymerization. This suggests that plant cells may perceive perturbation of the actin cytoskeleton, and this stimulus may trigger plant defense responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aepfelbacher M, Heesemann J (2001) Modulation of Rho GTPases and the actin cytoskeleton by Yersinia outer proteins (Yops). Int J Med Microbiol 291:269–276

    Article  PubMed  CAS  Google Scholar 

  • Büttner D, Bonas U (2003) Common infection strategies of plant and animal pathogenic bacteria. Curr Opin Plant Biol 6:312–319

    Article  PubMed  CAS  Google Scholar 

  • Cornelis GR (2002) The Yersinia Ysc–Yop ‘Type III’ weaponary. Nat Rev Mol Cell Biol 3:742–752

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Desveaux D, Singer AU, Dangl JL (2006) Type III effector proteins: doppelgangers of bacterial virulence. Curr Opin Plant Biol 9:376–382

    Article  PubMed  CAS  Google Scholar 

  • Geitmann A, Snowman BN, Emons AMC, Franklin-Tong VE (2000) Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas. Plant Cell 12:1239–1251

    Article  PubMed  CAS  Google Scholar 

  • Ingle RA, Carstens M, Denby KJ (2006) PAMP recognition and the plant–pathogen arms race. Bioessays 28:880-889

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi I, Kobayashi Y, Yamaoka N, Kunoh H (1992) Recognition of a pathogen and a non-pathogen by barley coleoptile cells. III. Responses of microtubules and actin filaments in barley coleoptile cells to penetration attempts. Can J Bot 70:1815–1823

    Article  Google Scholar 

  • Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Takemoto T, Kunoh H (1997a) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J. 11:525–537

    Article  CAS  Google Scholar 

  • Kobayashi Y, Yamada M, Kobayashi I, Kunoh H (1997b) Actin microfilaments are required for the expression of non-host resistance in higher plants. Plant Cell Physiol 38:725–733

    CAS  Google Scholar 

  • Koch E, Slusarenko A (1990) Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2:437–445

    Article  PubMed  CAS  Google Scholar 

  • Mackey D, Holt BF III, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–754

    Article  PubMed  CAS  Google Scholar 

  • McLusky SR, Bennett MH, Beale MH, Lewis MJ, Gaskin P, Mansfield JW (1999) Cell wall alterations and localized accumulation of feruloyl-3′-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis. Plant J 17:523–534

    Article  CAS  Google Scholar 

  • Nishimura MT, Stein M, Hou B-H, Vogel JP, Edwards H, Somerville SC (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301:969–972

    Article  PubMed  CAS  Google Scholar 

  • Šamaj J, Ovecka M, Hlavacka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bögre L, Baluška F, Hirt H (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J 21:3296–3306

    Article  PubMed  Google Scholar 

  • Sangwan V, Örvar BL, Beyerly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J 31:629–638

    Article  PubMed  CAS  Google Scholar 

  • Schmelzer E (2002) Cell polarization, a crucial process in fungal defence. Trends Plant Sci 7:411–415

    Article  PubMed  CAS  Google Scholar 

  • Shimada C, Lipka V, O’Connell R, Okuno T, Schulze-Lefert P, Takano Y (2006) Nonhost resistance in ArabidopsisColletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant–Microbe Interact 19:270–279

    Article  PubMed  CAS  Google Scholar 

  • Stein M, Dittgen J, Sánchez-Rodríguez C, Hou B-H, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746

    Article  PubMed  CAS  Google Scholar 

  • Thomas DD (1978) Cytochalasin effects in plants and eukaryotic microbial systems. In: Tanenbaum SW (ed) Cytochalasins: biochemical and cell biological aspects. Elsevier/North-Holland Biomedical Press, New York, pp 257–275

    Google Scholar 

  • Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309

    Article  PubMed  CAS  Google Scholar 

  • Tsurushima T, Don LD, Kawashima K, Murakami J, Nakayashiki H, Tosa Y, Mayama S (2005) Pyrichalasin H production and pathogenicity of Digitaria-specific isolates of Pyricularia grisea. Mol Plant Pathol 6:605–613

    Article  CAS  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Métraux J-P, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Yuan H-Y, Yao L-L, Jia Z-Q, Li Y, Li Y-Z (2006) Verticillium dahliae toxin induced alterations of cytoskeletons and nucleoli in Arabidopsis thaliana suspension cells. Protoplasma 229:75–82

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, New Jersey, pp 718

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Yuko Ohashi (National Institute of Agrobiological Sciences, Tsukuba, Japan) for providing the DNA probes for acidic PR1 and PR2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issei Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, Y., Kobayashi, I. Depolymerization of the actin cytoskeleton induces defense responses in tobacco plants. J Gen Plant Pathol 73, 360–364 (2007). https://doi.org/10.1007/s10327-007-0029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-007-0029-5

Keywords

Navigation