Skip to main content
Log in

Detection of nitro-polycyclic aromatic hydrocarbons in mainstream and sidestream tobacco smoke using electron monochromator-mass spectrometry

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

For the first time, we show the presence of nitro substituted naphthalenes in both mainstream and sidestream tobacco smoke using electron monochromator-mass spectrometry. Only one mainstream smoke sample showed the presence of 1-nitronaphthalene (1-NN) at 20 pg/cigarette, while all of the sidestream smoke samples showed the presence of 1-NN at levels ranging from 0.40 to 0.60 ng/cigarette and 2-NN at quantities ranging from 1 to 2 ng/cigarette. Additionally, these levels showed a ratio of ~1:3 for 1-NN to 2-NN which demonstrates that the formation of 2-NN is favored under sidestream combustion conditions. No larger ring structure (>2) nitro-aromatics were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baker RR (1976) Gas velocities inside a burning cigarette. Nature 264:167–169. doi:10.1038/264167b0

    Article  Google Scholar 

  • Baldwin RM, Shultz MA, Buckpitt AR (2004) Bioactivation of the pulmonary toxicants naphthalene and 1-nitronaphthalene by rat CYP2F4. J Pharmacol Exp Ther 312:857–865. doi:10.1124/jpet.104.075440

    Article  Google Scholar 

  • Bamford HA, Baker JE (2003) Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the mid-Atlantic region. Atmos Environ 37(15):2077–2091. doi:10.1016/S1352-2310(03)00102-X

    Article  CAS  Google Scholar 

  • Chen PX, Moldoveanu SC (2003) Mainstream smoke chemical analyses for 2R4F Kentucky reference cigarette. Beitr Tabakforsch Int 20(7):448–458

    CAS  Google Scholar 

  • Dane AJ, Havey CD, Voorhees KJ (2006) The detection of nitro pesticides in mainstream and sidestream cigarette smoke using electron monochromator-mass spectrometry. Anal Chem 78(10):3227–3233. doi:10.1021/ac060328w

    Article  CAS  Google Scholar 

  • Davis DL, Nielson MT (2002) Tobacco: production, chemistry, and technology. Blackwell Science, Malden

    Google Scholar 

  • Havey CD, McCormick RL, Hayes RR, Dane AJ, Voorhees KJ (2006) Analysis of Nitro-polycyclic aromatic hydrocarbons in conventional diesel and Fischer-Tropsch diesel fuel emissions using electron monochromator-mass spectrometry. Anal Chem 78:4894–4900. doi:10.1021/ac060400q

    Article  CAS  Google Scholar 

  • Hoffmann D, Rathkamp G (1970) Quantitative determination of nitrobenzenes in cigarette smoke. Anal Chem 42(13):1643–1647. doi:10.1021/ac60295a049

    Article  CAS  Google Scholar 

  • Kielhorn J, Wahnschaffe U, Mangelsdorf I (2003) Selected nitro- and nitro-oxy-polycyclic aromatic hydrocarbons. World Health Organization, Geneva

    Google Scholar 

  • Laramee JA, Mazurkiewicz P, Berkout V, Deinzer ML (1996) Electron-monochromator mass spectrometer instrument for negative ion analysis of electronegative compounds. Mass Spectrom Rev 15:15–42. doi :10.1002/(SICI)1098-2787(1996)15:1<15::AID-MAS2>3.0.CO;2-E

    Article  CAS  Google Scholar 

  • Laramee JA, Cody RB, Deinzer ML (2000) Discrete energy electron capture negative ion mass spectrometry. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 11651–11679

    Google Scholar 

  • Lebedevas S, Vaicekauskas A, Suškov P (2007) Presumptions of effective operation of diesel engines running on RME biodiesel. Research on kinetics of combustion of RME biodiesel. Transport XXII(2):126–133

    Google Scholar 

  • O’Neill IK, Brunnemann KD, Dodet B, Hoffmann D (1987) Passive smoking. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Pitts JN Jr, van Cauwenberghe KA, Grosjean D, Schmid JP, Fitz DR, Belser WL et al (1978) Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives. Science 202(4367):515–519. doi:10.1126/science.705341

    Article  Google Scholar 

  • Ramdahl T, Zielinska B, Arey J, Atkinson R, Winer AM, Pitts JN Jr (1986) Ubiquitous occurrence of 2-nitrofluoranthene and 2-nitropyrene in air. Nature 321(6068):425–427. doi:10.1038/321425a0

    Article  CAS  Google Scholar 

  • Rosenkranz HS, Mermelstein R (1983) Mutagenicity and genotoxicity of nitroarenes. All nitro-containing chemicals were not created equal. Mutat Res 114:217–267

    Article  CAS  Google Scholar 

  • Verschoyle RD, Carthew P, Wolf CR, Dinsdale D (1993) 1-nitronaphthalene toxicity in rat lung and liver: effects of inhibiting and inducing cytochrome P450 activity. Toxicol Appl Pharmacol 122(2):208–213. doi:10.1006/taap.1993.1189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Phillip Morris USA and the Colorado Tobacco Research Program for their generous support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent J. Voorhees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havey, C.D., Dane, A.J., Abbas-Hawks, C. et al. Detection of nitro-polycyclic aromatic hydrocarbons in mainstream and sidestream tobacco smoke using electron monochromator-mass spectrometry. Environ Chem Lett 7, 331–336 (2009). https://doi.org/10.1007/s10311-008-0174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-008-0174-x

Keywords

Navigation