Skip to main content

Advertisement

Log in

Human Microplastics Exposure and Potential Health Risks to Target Organs by Different Routes: A Review

  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Microplastics in the environment enter the human body through diet, drinking water, and air inhalation. The widespread detection of microplastics in several human tissues was conducted. However, limited knowledge exists on the number of microplastics that can be ingested by humans and the potential adverse effects on various organs. To address these issues, we reviewed the types and abundance of microplastics through different pathways and summarized the average annual intake in humans.

Recent Findings

An adult can ingest about (4.88–5.77) × 105 microplastics/year through the dietary route [including salt (5.00–7.00) × 103, fish (0.50–1.20)×104, fruits (4.48–4.62) × 105, and vegetables (2.96–9.55)×104]. The amount of microplastics ingested via drinking water route was approximately (0.22–1.2)×106 microplastics/year. Inhalation of microplastics via atmospheric environment was nearly (0.21–2.51) × 106 microplastics/year [including indoor (0.16–2.30) × 106 and outdoor (0.46–2.10)×105].

Summary

In conclusion, we found that the human body ingests microplastics most through inhalation, followed by drinking water and diet. We also summarized the types and abundance of microplastics that were enriched in different organs after microplastics entered the human body. Microplastics entering the body would cross the barrier into the target effector organs and cause adverse health effects, mainly including induction of intracellular oxidative stress, genotoxicity, reproductive toxicity, and inflammatory responses. In conclusion, exposure to microplastics can cause many adverse effects on the health of the organism. Thus, an increased awareness of the crisis, urgent discussion, and practical actions are needed to mitigate microplastics contaminants in the environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lebreton L, Andrady A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019;5(1). https://doi.org/10.1057/s41599-018-0212-7.

  2. Liu K, Wang X, Fang T, Xu P, Zhu L, Li D. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci Total Environ. 2019;675:462–71. https://doi.org/10.1016/j.scitotenv.2019.04.110.

    Article  CAS  Google Scholar 

  3. Liu K, Wu T, Wang X, Song Z, Zong C, Wei N, Li D. Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environ Sci Technol. 2019;53(18):10612–9. https://doi.org/10.1021/acs.est.9b03427.

    Article  CAS  Google Scholar 

  4. Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AWG, McGonigle D, Russell AE. Lost at sea: Where is all the plastic? Science. 2004;304(5672):838–838. https://doi.org/10.1126/science.1094559.

    Article  CAS  Google Scholar 

  5. Chen G, Feng Q, Wang J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci Total Environ. 2020;703. https://doi.org/10.1016/j.scitotenv.2019.135504.

  6. Chen Q, Gao J, Yu H, Su H, Yang Y, Cao Y, Zhang Q, Ren Y, Hollert H, Shi H, Chen C, Liu H. An emerging role of microplastics in the etiology of lung ground glass nodules. Environ Sci Eur. 2022;34(1):25. https://doi.org/10.1186/s12302-022-00605-3.

    Article  CAS  Google Scholar 

  7. Chen Y, Li X, Zhang X, Zhang Y, Gao W, Wang R, He D. Air conditioner filters become sinks and sources of indoor microplastics fibers. Environ Pollut. 2022;292. https://doi.org/10.1016/j.envpol.2021.118465.

  8. Kole PJ, Löhr AJ, Van Belleghem F, Ragas A. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int J Environ Res Public Health. 2017;14(10). https://doi.org/10.3390/ijerph14101265.

  9. Kang H, Park S, Lee B, Kim I, Kim S. Concentration of microplastics in road dust as a function of the drying period—a case study in G City, Korea. Sustainability. 2022;14(5). https://doi.org/10.3390/su14053006.

  10. Dehghani S, Moore F, Akhbarizadeh R. Microplastic pollution in deposited urban dust, Tehran metropolis. Iran Environ Sci Pollut Res Int. 2017;24(25):20360–71. https://doi.org/10.1007/s11356-017-9674-1.

    Article  CAS  Google Scholar 

  11. Habib D, Cannone L. Synthetic fibers as indicators of municipal sewage sludge, sludge products, and sewage treatment plant effluents. Wat Air and Soil Poll. 1998.

  12. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ. 2017;586:127–41. https://doi.org/10.1016/j.scitotenv.2017.01.190.

    Article  CAS  Google Scholar 

  13. Zubris KAV, Richards BK. Synthetic fibers as an indicator of land application of sludge. Environ Pollut. 2005;138(2):201–11. https://doi.org/10.1016/j.envpol.2005.04.013.

    Article  CAS  Google Scholar 

  14. Kasirajan S, Ngouajio M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron Sustain Dev. 2012;32(2):501–29. https://doi.org/10.1007/s13593-011-0068-3.

    Article  CAS  Google Scholar 

  15. Kyrikou I, Briassoulis D. Biodegradation of agricultural plastic films: A critical review. J Polym Environ. 2007;15(2):125–50. https://doi.org/10.1007/s10924-007-0053-8.

    Article  CAS  Google Scholar 

  16. Amato-Lourenço LF, Carvalho-Oliveira R, Júnior GR, dos Santos Galvão L, Ando RA, Mauad T. Presence of airborne microplastics in human lung tissue. J Hazard Mater. 2021;416: 126124.

    Article  Google Scholar 

  17. Jenner LC, Rotchell JM, Bennett RT, Cowen M, Tentzeris V, Sadofsky LR. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci Total Environ. 2022;831: 154907.

    Article  CAS  Google Scholar 

  18. • Horvatits T, Tamminga M, Liu B, Sebode M, Carambia A, Fischer L, Püschel K, Huber S, Fischer EK. Microplastics detected in cirrhotic liver tissue. EBioMedicine. 2022;82: 104147. These results indicate that chronic liver disease seems to be a key driver in MP accumulation in the human liver.

  19. Ibrahim YS, Tuan Anuar S, Azmi AA, Wan Mohd Khalik WMA, Lehata S, Hamzah SR, Ismail D, Ma ZF, Dzulkarnaen A, Zakaria Z. Detection of microplastics in human colectomy specimens. JGH Open. 2021;5(1):116–21.

    Article  Google Scholar 

  20. Luqman A, Nugrahapraja H, Wahyuono RA, Islami I, Haekal MH, Fardiansyah Y, Putri BQ, Amalludin FI, Rofiqa EA, Götz F. Microplastic contamination in human stools, foods, and drinking water associated with Indonesian coastal population. Environments. 2021;8(12):138.

    Article  Google Scholar 

  21. Schwabl P, Köppel S, Königshofer P, Bucsics T, Trauner M, Reiberger T, Liebmann B. Detection of various microplastics in human stool: A prospective case series. Ann Intern Med. 2019;171(7):453–7.

    Article  Google Scholar 

  22. • Zhang J, Wang L, Trasande L, Kannan K. Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces. Environ Sci Technol Lett. 2021;8(11):989–94. The study authors concluded that infants have higher exposure to microplastics than adults and attributed the higher exposure to infants to the widespread use of products such as toys, teether, and bottles.

  23. Zhang N, Li YB, He HR, Zhang JF, Ma GS. You are what you eat: Microplastics in the feces of young men living in Beijing. Sci Total Environ. 2021;767.

  24. Leslie HA, Van Velzen MJ, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle pollution in human blood. Environ Int. 2022;163: 107199.

    Article  CAS  Google Scholar 

  25. Abbasi S, Turner A. Human exposure to microplastics: A study in Iran. J Hazard Mater. 2021;403.

  26. Amereh F, Amjadi N, Mohseni-Bandpei A, Isazadeh S, Mehrabi Y, Eslami A, Naeiji Z, Rafiee M. Placental plastics in young women from general population correlate with reduced foetal growth in IUGR pregnancies. Environ Pollut. 2022;314: 120174.

    Article  CAS  Google Scholar 

  27. Braun T, Ehrlich L, Henrich W, Koeppel S, Lomako I, Schwabl P, Liebmann B. Detection of microplastic in human placenta and meconium in a clinical setting. Pharmaceutics. 2021;13(7):921.

    Article  CAS  Google Scholar 

  28. Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti MCA, Baiocco F, Draghi S. Plasticenta: First evidence of microplastics in human placenta. Environ Int. 2021;146.

  29. Zhu L, Zhu J, Zuo R, Xu Q, Qian Y, Lihui A. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Sci Total Environ. 2022;159060.

  30. Ragusa A, Notarstefano V, Svelato A, Belloni A, Gioacchini G, Blondeel C, Zucchelli E, De Luca C, D’Avino S, Gulotta A. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. Polymers. 2022;14(13):2700.

    Article  CAS  Google Scholar 

  31. Wu D, Feng Y, Wang R, Jiang J, Guan Q, Yang X, Wei H, Xia Y, Luo Y. Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence. J Adv Res. 2022.

  32. Wu H, Xu T, Chen T, Liu J, Xu S. Oxidative stress mediated by the TLR4/NOX2 signalling axis is involved in polystyrene microplastic-induced uterine fibrosis in mice? Sci Total Environ. 2022;838:155825. https://doi.org/10.1016/j.scitotenv.2022.155825.

  33. Renzi M, Blaskovic A. Litter & microplastics features in table salts from marine origin: Italian versus Croatian brands. Mar Pollut Bull. 2018;135:62–8. https://doi.org/10.1016/j.marpolbul.2018.06.065.

    Article  CAS  Google Scholar 

  34. Masia P, Ardura A, Garcia-Vazquez E. Microplastics in seafood: Relative input of Mytilus galloprovincialis and table salt in mussel dishes. Food Res Int (Ottawa, Ont). 2022;153:110973. https://doi.org/10.1016/j.foodres.2022.110973.

  35. Kim JS, Lee HJ, Kim SK, Kim HJ. Global pattern of microplastics (MPs) in commercial food-grade salts: Sea salt as an indicator of seawater MP pollution. Environ Sci Technol. 2018;52(21):12819–28. https://doi.org/10.1021/acs.est.8b04180.

    Article  CAS  Google Scholar 

  36. • Yang DQ, Shi HH, Li L, Li JN, Jabeen K, Kolandhasamy P. Microplastic pollution in table salts from China. Environ Sci Technol. 2015;49(22):13622–7. https://doi.org/10.1021/acs.est.5b03163. This study demonstrates that the abundance of microplastics in sea salt is significantly higher than in lake salt and rock/well salt. This suggests that seafood is heavily contaminated with microplastics.

  37. Iniguez ME, Conesa JA, Fullana A. Microplastics in Spanish table salt. Sci Rep. 2017;7:8620. https://doi.org/10.1038/s41598-017-09128-x.

  38. Gundogdu S. Contamination of table salts from Turkey with microplastics. Food Addit Contam Part A-Chem Anal Control Expo Risk Assess. 2018;35(5):1006–14. https://doi.org/10.1080/19440049.2018.1447694.

    Article  CAS  Google Scholar 

  39. Seth CK, Shriwastav A. Contamination of Indian sea salts with microplastics and a potential prevention strategy. Environ Sci Pollut Res. 2018;25(30):30122–31. https://doi.org/10.1007/s11356-018-3028-5.

    Article  CAS  Google Scholar 

  40. Lee H, Kunz A, Shim WJ, Walther BA. Microplastic contamination of table salts from Taiwan, including a global review. Sci Rep. 2019;9:10145. https://doi.org/10.1038/s41598-019-46417-z.

  41. Zick Y. Uncoupling insulin signalling by serine/threonine phosphorylation: A molecular basis for insulin resistance. Biochem Soc Trans. 2004;32:812–6. https://doi.org/10.1042/bst0320812.

    Article  CAS  Google Scholar 

  42. Karami A, Golieskardi A, Choo CK, Larat V, Galloway TS, Salamatinia B. The presence of microplastics in commercial salts from different countries. Sci Rep. 2017;7:46173. https://doi.org/10.1038/srep46838.

  43. Xu XY, Wong CY, Tam NFY, Lo HS, Cheung SG. Microplastics in invertebrates on soft shores in Hong Kong: Influence of habitat, taxa and feeding mode. Sci Total Environ. 2020;715:136999. https://doi.org/10.1016/j.scitotenv.2020.136999.

  44. Phuong NN, Poirier L, Pham QT, Lagarde F, Zalouk-Vergnoux A. Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: Location, season and/or mode of life? Mar Pollut Bull. 2018;129(2):664–74. https://doi.org/10.1016/j.marpolbul.2017.10.054.

    Article  CAS  Google Scholar 

  45. Avio CG, Pittura L, d’Errico G, Abel S, Amorello S, Marino G, Gorbi S, Regoli F. Distribution and characterization of microplastic particles and textile microfibers in Adriatic food webs: General insights for biomonitoring strategies. Environ Pollut. 2020;258:113766. https://doi.org/10.1016/j.envpol.2019.113766.

  46. Reguera P, Vinas L, Gago J. Microplastics in wild mussels (Mytilus spp.) from the north coast of Spain. Sci Mar. 2019;83(4):337–47. https://doi.org/10.3989/scimar.04927.05A.

    Article  CAS  Google Scholar 

  47. Digka N, Tsangaris C, Torre M, Anastasopoulou A, Zeri C. Microplastics in mussels and fish from the Northern Ionian Sea. Mar Pollut Bull. 2018;135:30–40. https://doi.org/10.1016/j.marpolbul.2018.06.063.

    Article  CAS  Google Scholar 

  48. Li JN, Green C, Reynolds A, Shi HH, Rotchell JM. Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. Environ Pollut. 2018;241:35–44. https://doi.org/10.1016/j.envpol.2018.05.038.

    Article  CAS  Google Scholar 

  49. Li JN, Qu XY, Su L, Zhang WW, Yang DQ, Kolandhasamy P, Li DJ, Shi HH. Microplastics in mussels along the coastal waters of China. Environ Pollut. 2016;214:177–84. https://doi.org/10.1016/j.envpol.2016.04.012.

    Article  CAS  Google Scholar 

  50. Wu FZ, Wang YJ, Leung ONH, Huang W, Zeng JN, Tang YB, Chen JF, Shi AQ, Yu X, Xu XQ, Zhang HG, Cao L. Accumulation of microplastics in typical commercial aquatic species: A case study at a productive aquaculture site in China. Sci Total Environ. 2020;708. https://doi.org/10.1016/j.scitotenv.2019.135432.

  51. Zhang DD, Cui YZ, Zhou HH, Jin C, Yu XW, Xu YJ, Li YH, Zhang CF. Microplastic pollution in water, sediment, and fish from artificial reefs around the Ma’an Archipelago, Shengsi, China. Sci Total Environ. 2020;703:134768. https://doi.org/10.1016/j.scitotenv.2019.134768.

  52. Cho Y, Shim WJ, Jang M, Han GM, Hong SH. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ Pollut. 2019;245:1107–16. https://doi.org/10.1016/j.envpol.2018.11.091.

    Article  CAS  Google Scholar 

  53. Park TJ, Lee SH, Lee MS, Lee JK, Lee SH, Zoh KD. Occurrence of microplastics in the Han River and riverine fish in South Korea. Sci Total Environ. 2020;708:134535. https://doi.org/10.1016/j.scitotenv.2019.134535.

  54. Bucol LA, Romano EF, Cabcaban SM, Siplon LMD, Madrid GC, Bucol AA, Polidoro B. Microplastics in marine sediments and rabbitfish (Siganus fuscescens) from selected coastal areas of Negros Oriental, Philippines. Mar Pollut Bull. 2020;150:110685. https://doi.org/10.1016/j.marpolbul.2019.110685.

  55. Vries AN, Govoni D, Arnason SH, Carlsson P. Microplastic ingestion by fish: Body size, condition factor and gut fullness are not related to the amount of plastics consumed. Mar Pollut Bull. 2020;151:110827. https://doi.org/10.1016/j.marpolbul.2019.110827.

  56. Scott N, Porter A, Santillo D, Simpson H, Lloyd-Williams S, Lewis C. Particle characteristics of microplastics contaminating the mussel Mytilus edulis and their surrounding environments. Mar Pollut Bull. 2019;146:125–33. https://doi.org/10.1016/j.marpolbul.2019.05.041.

    Article  CAS  Google Scholar 

  57. Zhu JM, Zhang Q, Li YP, Tan SD, Kang ZJ, Yu XY, Lan WL, Cai L, Wang JZ, Shi HH. Microplastic pollution in the Maowei Sea, a typical mariculture bay of China. Sci Total Environ. 2019;658:62–8. https://doi.org/10.1016/j.scitotenv.2018.12.192.

    Article  CAS  Google Scholar 

  58. Catarino AI, Macchia V, Sanderson WG, Thompson RC, Henry TB. Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environ Pollut. 2018;237:675–84. https://doi.org/10.1016/j.envpol.2018.02.069.

    Article  CAS  Google Scholar 

  59. Martinelli JC, Phan S, Luscombe CK, Padilla-Gamino JL. Low incidence of microplastic contaminants in Pacific oysters (Crassostrea gigas Thunberg) from the Salish Sea, USA. Sci Total Environ. 2020;715:136826. https://doi.org/10.1016/j.scitotenv.2020.136826.

  60. Danopoulos E, Twiddy M, Rotchell JM. Microplastic contamination of drinking water: A systematic review. PloS One. 2020;15(7):e0236838. https://doi.org/10.1371/journal.pone.0236838.

  61. Mukotaka A, Kataoka T, Nihei Y. Rapid analytical method for characterization and quantification of microplastics in tap water using a Fourier-transform infrared microscope. Sci Total Environ. 2021;790:148231. https://doi.org/10.1016/j.scitotenv.2021.148231.

  62. Kosuth M, Mason SA, Wattenberg EV. Anthropogenic contamination of tap water, beer, and sea salt. PloS One. 2018;13(4):e0194970. https://doi.org/10.1371/journal.pone.0194970.

  63. Lachenmeier DW, Kocareva J, Noack D, Kuballa T. Microplastic identification in German beer - an artefact of laboratory contamination? Dtsch Lebensm-Rundsch. 2015;111(10):437–440. Go to ISI http://WOS:000364600300008

  64. Liebezeit G, Liebezeit E. Synthetic particles as contaminants in German beers. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2014;31(9):1574–8. https://doi.org/10.1080/19440049.2014.945099.

    Article  CAS  Google Scholar 

  65. Mintenig SM, Loder MGJ, Primpke S, Gerdts G. Low numbers of microplastics detected in drinking water from ground water sources. Sci Total Environ. 2019;648:631–5. https://doi.org/10.1016/j.scitotenv.2018.08.178.

    Article  CAS  Google Scholar 

  66. Pivokonsky M, Cermakova L, Novotna K, Peer P, Cajthaml T, Janda V. Occurrence of microplastics in raw and treated drinking water. Sci Total Environ. 2018;643:1644–51. https://doi.org/10.1016/j.scitotenv.2018.08.102.

    Article  CAS  Google Scholar 

  67. Wang ZF, Lin T, Chen W. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Sci Total Environ. 2020;700:134520. https://doi.org/10.1016/j.scitotenv.2019.134520.

  68. Shruti VC, Perez-Guevara F, Elizalde-Martinez I, Kutralam-Muniasamy G. First study of its kind on the microplastic contamination of soft drinks, cold tea and energy drinks-future research and environmental considerations. Sci Total Environ. 2020;726:138580. https://doi.org/10.1016/j.scitotenv.2020.138580.

  69. Shruti VC, Perez-Guevara F, Elizalde-Martinez I, Kutralam-Muniasamy G. Toward a unified framework for investigating micro(nano)plastics in packaged beverages intended for human consumption. Environ Pollut. 2021;268:115811. https://doi.org/10.1016/j.envpol.2020.115811.

  70. Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, Tassin B. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut. 2017;221:453–8. https://doi.org/10.1016/j.envpol.2016.12.013.

    Article  CAS  Google Scholar 

  71. Liao Z, Ji X, Ma Y, Lv B, Huang W, Zhu X, Fang M, Wang Q, Wang X, Dahlgren R, Shang X. Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China. J Hazard Mater. 2021;417:126007. https://doi.org/10.1016/j.jhazmat.2021.126007.

  72. Abbasi S, Keshavarzi B, Moore F, Turner A, Kelly FJ, Dominguez AO, Jaafarzadeh N. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County. Iran Environ Pollut. 2019;244:153–64. https://doi.org/10.1016/j.envpol.2018.10.039.

  73. Syafei AD, Nurasrin NR, Assomadi AF, Boedisantoso R. Microplastic pollution in the ambient air of Surabaya, Indonesia. Curr World Environ. 2019;14(2):290–8. https://doi.org/10.12944/cwe.14.2.13.

    Article  Google Scholar 

  74. Gaston E, Woo M, Steele C, Sukumaran S, Anderson SJAS. EXPRESS: Microplastics differ between indoor and outdoor air masses: Insights from multiple microscopy methodologies. 2020b;74(6):000370282092065.

  75. •• Zhu X, Huang W, Fang M, Liao Z, Wang Y, Xu L, Mu Q, Shi C, Lu C, Deng H, Dahlgren R, Shang X. Airborne microplastic concentrations in five megacities of Northern and Southeast China. Environ Sci Technol. 2021;55(19):12871–81. https://doi.org/10.1021/acs.est.1c03618. The results of this study show thatmaximum annual exposure of humans to airborne microplastics was estimated in the range of 1–2 million/year in these megacities, highlighting the need for additional research examining the human health risks from the inhalation of airborne microplastics.

  76. Zhu X, Huang W, Fang M, Liao Z, Wang Y, Xu L, Mu Q, Shi C, Lu C, Deng H, Dahlgren R, Shang X. Airborne microplastic concentrations in five megacities of Northern and Southeast China. Environ Sci Technol. 2021;55(19):12871–81. https://doi.org/10.1021/acs.est.1c03618.

    Article  CAS  Google Scholar 

  77. Vianello A, Jensen RL, Liu L, Vollertsen J. Simulating human exposure to indoor airborne microplastics using a breathing thermal manikin. Sci Rep. 2019;9(1):8670. https://doi.org/10.1038/s41598-019-45054-w.

    Article  CAS  Google Scholar 

  78. Gaston E, Woo M, Steele C, Sukumaran S, Anderson S. Microplastics differ between indoor and outdoor air masses: Insights from multiple microscopy methodologies. Appl Spectrosc. 2020;74(9):1079–98. https://doi.org/10.1177/0003702820920652.

    Article  CAS  Google Scholar 

  79. Xumiao L, Prata JC, Alves JR, Duarte AC, Rocha-Santos T, Cerqueira M. Airborne microplastics and fibers in indoor residential environments in Aveiro, Portugal. Environ Adv. 2021b;6:100134. https://doi.org/10.1016/j.envadv.2021.100134.

  80. •• Oliveri Conti G, Ferrante M, Banni M, Favara C, Nicolosi I, Cristaldi A, Fiore M, Zuccarello P. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ Res. 2020;187:109677. https://doi.org/10.1016/j.envres.2020.109677. This study is the first to estimate the daily intake of microplastics by adults and children via vegetables and fruits and found that fruits have higher levels of microplastic pollution compared to vegetables.

  81. Fang C, Zheng RH, Chen HZ, Hong FK, Lin LS, Lin H, Guo HG, Bailey C, Segner H, Mu JL, Bo J. Comparison of microplastic contamination in fish and bivalves from two major cities in Fujian province, China and the implications for human health. Aquaculture. 2019;512:734322. https://doi.org/10.1016/j.aquaculture.2019.734322.

  82. Su L, Cai HW, Kolandhasamy P, Wu CX, Rochman CM, Shi HH. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ Pollut. 2018;234:347–55. https://doi.org/10.1016/j.envpol.2017.11.075.

    Article  CAS  Google Scholar 

  83. Wootton N, Sarakinis K, Varea R, Reis-Santos P, Gillanders BM. Microplastic in oysters: A review of global trends and comparison to southern Australia. Chemosphere. 2022;307:136065. https://doi.org/10.1016/j.chemosphere.2022.136065.

  84. Jin H, Ma T, Sha X, Liu Z, Zhou Y, Meng X, Chen Y, Han X, Ding J. Polystyrene microplastics induced male reproductive toxicity in mice. J Hazard Mater. 2021;401:123430. https://doi.org/10.1016/j.jhazmat.2020.123430.

  85. Qi Y, Yang X, Pelaez AM, Huerta Lwanga E, Beriot N, Gertsen H, Garbeva P, Geissen V. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ. 2018;645:1048–56. https://doi.org/10.1016/j.scitotenv.2018.07.229.

    Article  CAS  Google Scholar 

  86. Liu Z, Zhuan Q, Zhang L, Meng L, Fu X, Hou Y. Polystyrene microplastics induced female reproductive toxicity in mice. J Hazard Mater. 2022;424:127629. https://doi.org/10.1016/j.jhazmat.2021.127629.

  87. Chang M. Reducing microplastics from facial exfoliating cleansers in wastewater through treatment versus consumer product decisions. Mar Pollut Bull. 2015;101(1):330–3. https://doi.org/10.1016/j.marpolbul.2015.10.074.

    Article  CAS  Google Scholar 

  88. • Hartline NL, Bruce NJ, Karba SN, Ruff EO, Sonar SU, Holden PA. Microfiber masses recovered from conventional machine washing of new or aged garments. Environ Sci Technol. 2016;50(21):11532–8. https://doi.org/10.1021/acs.est.6b03045. This study illustrates that washing synthetic jackets or sweaters causes most microfibers to enter the environment, which is one of the important ways that microplastics enter the environment.

  89. Schymanski D, Goldbeck C, Humpf HU, Furst P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018;129:154–62. https://doi.org/10.1016/j.watres.2017.11.011.

    Article  CAS  Google Scholar 

  90. Li YA, Peng L, Fu JX, Dai XL, Wang GQ. A microscopic survey on microplastics in beverages: The case of beer, mineral water and tea. Analyst. 2022;147(6):1099–105. https://doi.org/10.1039/d2an00083k.

    Article  CAS  Google Scholar 

  91. Baeza-Martínez C, Olmos S, González-Pleiter M, López-Castellanos J, García-Pachón E, Masiá-Canuto M, Hernández-Blasco L, Bayo J. First evidence of microplastics isolated in European citizens’ lower airway. J Hazard Mater. 2022;438: 129439.

    Article  Google Scholar 

  92. • Jiang Y, Han J, Na J, Fang J, Qi C, Lu J, Liu X, Zhou C, Feng J, Zhu W. Exposure to microplastics in the upper respiratory tract of indoor and outdoor workers. Chemosphere. 2022;307:136067. This study compared the abundance of microplastics in the nasal wash and sputum of couriers from office workers and outdoor workers and found that the abundance of microplastics in the nasal wash of office workers was significantly higher than that of couriers.

  93. •• Huang S, Huang X, Bi R, Guo Q, Yu X, Zeng Q, Huang Z, Liu T, Wu H, Chen Y. Detection and analysis of microplastics in human sputum. Environ Sci Technol. 2022;56(4):2476–86. In this study, 21 microplastics were detected in the sputum of 22 patients with respiratory diseases. This suggests that respiratory inhalation is an important way for airborne microplastics to enter the human body.

  94. Wang S, Han Q, Wei Z, Wang Y, Xie J, Chen M. Polystyrene microplastics affect learning and memory in mice by inducing oxidative stress and decreasing the level of acetylcholine. Food Chem Toxicol. 2022;162:112904. https://doi.org/10.1016/j.fct.2022.112904.

  95. Yin K, Wang D, Zhao H, Wang Y, Zhang Y, Liu Y, Li B, Xing M. Polystyrene microplastics up-regulates liver glutamine and glutamate synthesis and promotes autophagy-dependent ferroptosis and apoptosis in the cerebellum through the liver-brain axis. Environ Pollut. 2022;307:119449. https://doi.org/10.1016/j.envpol.2022.119449.

  96. Prata JC. Airborne microplastics: Consequences to human health? Environ Pollut. 2018;234:115–26. https://doi.org/10.1016/j.envpol.2017.11.043.

    Article  CAS  Google Scholar 

  97. Kern DG, Kuhn C, Ely EW, Pransky GS, Mello CJ, Fraire AE, Müller J. Flock worker’s lung: Broadening the spectrum of clinicopathology, narrowing the spectrum of suspected etiologies. Chest. 2000;117(1):251–9. https://doi.org/10.1378/chest.117.1.251.

    Article  CAS  Google Scholar 

  98. Dong CD, Chen CW, Chen YC, Chen HH, Lee JS, Lin CH. Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. J Hazard Mater. 2020;385:121575. https://doi.org/10.1016/j.jhazmat.2019.121575.

  99. Lu K, Lai KP, Stoeger T, Ji S, Lin Z, Lin X, Chan TF, Fang JKH, Lo M, Gao L, Qiu C, Chen S, Chen G, Li L, Wang L. Detrimental effects of microplastic exposure on normal and asthmatic pulmonary physiology. J Hazard Mater. 2021;416:126069. https://doi.org/10.1016/j.jhazmat.2021.126069.

  100. Xu M, Halimu G, Zhang Q, Song Y, Fu X, Li Y, Zhang H. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ. 2019;694:133794. https://doi.org/10.1016/j.scitotenv.2019.133794.

  101. Shen R, Yang K, Cheng X, Guo C, Xing X, Sun H, Liu D, Liu X, Wang D. Accumulation of polystyrene microplastics induces liver fibrosis by activating cGAS/STING pathway. Environ Pollut. 2022;300:118986. https://doi.org/10.1016/j.envpol.2022.118986.

  102. Zhao Y, Bao Z, Wan Z, Fu Z, Jin Y. Polystyrene microplastic exposure disturbs hepatic glycolipid metabolism at the physiological, biochemical, and transcriptomic levels in adult zebrafish. Sci Total Environ. 2020;710:136279. https://doi.org/10.1016/j.scitotenv.2019.136279.

  103. Cheng W, Li X, Zhou Y, Yu H, Xie Y, Guo H, Wang H, Li Y, Feng Y, Wang Y. Polystyrene microplastics induce hepatotoxicity and disrupt lipid metabolism in the liver organoids. Sci Total Environ. 2022;806:150328. https://doi.org/10.1016/j.scitotenv.2021.150328.

  104. Ye G, Zhang X, Liu X, Liao X, Zhang H, Yan C, Lin Y, Huang Q. Polystyrene microplastics induce metabolic disturbances in marine medaka (Oryzias melastigmas) liver. Sci Total Environ. 2021;782:146885. https://doi.org/10.1016/j.scitotenv.2021.146885.

  105. • Bradney L, Wijesekara H, Palansooriya KN, Obadamudalige N, Bolan NS, Ok YS, Rinklebe J, Kim KH, Kirkham MB. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ Pollut. 2019;131:104937. https://doi.org/10.1016/j.envint.2019.104937. This study describes particulate plastics made of synthetic polymers, their origin, and their characteristics with emphasis on how particulate plastics and associated toxic trace elements contaminate terrestrial and aquatic ecosystems.

  106. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. Ferroptosis: Process and function. Cell Death Differ. 2016;23(3):369–79. https://doi.org/10.1038/cdd.2015.158.

    Article  CAS  Google Scholar 

  107. Montalban-Arques A, Scharl M. Intestinal microbiota and colorectal carcinoma: Implications for pathogenesis, diagnosis, and therapy. EBioMedicine. 2019;48. https://doi.org/10.1016/j.ebiom.2019.09.050.

  108. Li B, Ding Y, Cheng X, Sheng D, Xu Z, Rong Q, Wu Y, Zhao H, Ji X, Zhang Y. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere. 2020;244:125492. https://doi.org/10.1016/j.chemosphere.2019.125492.

  109. Lu L, Wan Z, Luo T, Fu Z, Jin Y. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ. 2018;631–632:449–58. https://doi.org/10.1016/j.scitotenv.2018.03.051.

    Article  CAS  Google Scholar 

  110. Gallant MJ, Ellis AK. Prenatal and early-life exposure to indoor air-polluting factors and allergic sensitization at 2 years of age. Ann Allergy Asthma Immunol. 2020;124(3):283–7. https://doi.org/10.1016/j.anai.2019.11.019.

    Article  Google Scholar 

  111. Bisanz JE, Upadhyay V, Turnbaugh JA, Ly K, Turnbaugh PJ. Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet. Cell Host Microbe. 2019;26(2):265-272.e264. https://doi.org/10.1016/j.chom.2019.06.013.

    Article  CAS  Google Scholar 

  112. Liang B, Zhong Y, Huang Y, Lin X, Liu J, Lin L, Hu M, Jiang J, Dai M, Wang B, Zhang B, Meng H, Lelaka JJJ, Sui H, Yang X, Huang Z. Underestimated health risks: Polystyrene micro- and nanoplastics jointly induce intestinal barrier dysfunction by ROS-mediated epithelial cell apoptosis. Part Fibre Toxicol. 2021;18(1):20–20. https://doi.org/10.1186/s12989-021-00414-1.

    Article  CAS  Google Scholar 

  113. Deng Y, Zhang Y, Lemos B, Ren H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep. 2017;7(1):46687. https://doi.org/10.1038/srep46687.

    Article  Google Scholar 

  114. Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects. Sci Total Environ. 2020;702:134455. https://doi.org/10.1016/j.scitotenv.2019.134455.

  115. Deng Y, Zhang Y, Qiao R, Bonilla MM, Yang X, Ren H, Lemos B. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus). J Hazard Mater. 2018;357:348–54. https://doi.org/10.1016/j.jhazmat.2018.06.017.

    Article  CAS  Google Scholar 

  116. Wang YL, Lee YH, Hsu YH, Chiu IJ, Huang CCY, Huang CC, Chia ZC, Lee CP, Lin YF, Chiu HW. The kidney-related effects of polystyrene microplastics on human kidney proximal tubular epithelial cells HK-2 and male C57BL/6 mice. Environ Health Perspect. 2021;129(5):057003. https://doi.org/10.1289/EHP7612.

  117. Tang J, Ni X, Zhou Z, Wang L, Lin S. Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral Pocillopora damicornis. Environ Pollut. 2018;243:66–74. https://doi.org/10.1016/j.envpol.2018.08.045.

    Article  CAS  Google Scholar 

  118. Hou B, Wang F, Liu T, Wang Z. Reproductive toxicity of polystyrene microplastics: In vivo experimental study on testicular toxicity in mice. J Hazard Mater. 2021;405:124028. https://doi.org/10.1016/j.jhazmat.2020.124028.

  119. Hou J, Lei Z, Cui L, Hou Y, Yang L, An R, Wang Q, Li S, Zhang H, Zhang L. Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/caspase-1 signaling pathway in rats. Ecotoxicol Environ Saf. 2021;212:112012. https://doi.org/10.1016/j.ecoenv.2021.112012.

  120. An R, Wang X, Yang L, Zhang J, Wang N, Xu F, Hou Y, Zhang H, Zhang L. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology. 2021;449:152665. https://doi.org/10.1016/j.tox.2020.152665.

Download references

Acknowledgements

We thank all the members in our lab for their great assistance with this study.

Funding

This work was supported by the National Key Research and Development Program of China (grant numbers: 2022YFF1202900), the National Natural Science Foundation of China (grant numbers: 31771100 and 32000815), and the key technologies R & D program of Tianjin (21JCZDJC00580).

Author information

Authors and Affiliations

Authors

Contributions

Under the supervision of Liqun Chen and Can Wang, Ziye Yang, Zhihong Feng, and Meixue Wang conducted article search, information analysis, and article writing. Ziqi Wang sorted out the information and wrote part of the content. Mingxia Lv cooperatively collected information and compiled some table contents. Jinghao Chang supplemented and revised the details of the article. All authors read and contributed to the manuscript.

Corresponding authors

Correspondence to Liqun Chen or Can Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Wang, M., Feng, Z. et al. Human Microplastics Exposure and Potential Health Risks to Target Organs by Different Routes: A Review. Curr Pollution Rep 9, 468–485 (2023). https://doi.org/10.1007/s40726-023-00273-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-023-00273-8

Keywords

Navigation