Skip to main content
Log in

High-speed optical signal processing using semiconductor optical amplifiers

  • Published:
Journal of Optical and Fiber Communications Reports

Abstract

The authors report on all-optical switching devices based on semiconductor optical amplifiers (SOA) in applications for optical time division multiplexing (OTDM) transmission technology. The report includes a discussion on the basic properties of an SOA, on the nonlinear processes of cross-phase modulation and four-wave mixing in the SOA used for all-optical switching, and on the application of the SOA as demultiplexer, add-drop multiplexer, clock recovery and wavelength converter. The devices considered here operate at data rates in excess of \Gb80, where electrical signal processing is not available today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. W. Crowe and W. E. Ahearn, “Semiconductor laser amplifier,’’ IEEE J. Quantum Electron., 2, 283-289 (1966).

    CAS  Google Scholar 

  • T. Saitoh and T. Mukai, “Recent progress in semiconductor laser amplifiers,” J. Lightwave Technol., 6, 1656-1988 (1988).

    CAS  Google Scholar 

  • W. F. Kosonocky and R. H. Cornely, “Semiconductor laser amplifier,” IEEE J. Quantum Electron., 4, 125-131 (1968).

    Article  Google Scholar 

  • T. Mukai, Y. Yamamoto, and T. Kimura, “Optical amplification by semiconductor lasers,” Semiconductors and Semimetals, 22 Part E, 265-321 (1985).

    Google Scholar 

  • M. O’Mahony, “Semiconductor laser optical amplifier for use in future fiber systems,” J. Lightwave Technol., 6, 531-544 (1988).

    CAS  Google Scholar 

  • G. Grosskopf, L. Kuller, R. Ludwig, R. Schnabel, and H.G. Weber, “Semicondutor laser optical amplifier in switching and distribution networks,” Opt. Quant. Electron., 21, 59-74 (1989).

    Google Scholar 

  • M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer Academic Publishers, 2002).

  • G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers. (New York: Van Nostrand Reinhold, 1986).

  • L. F. Tiemeijer, G. N. van den Hoven, P. J. A. Thijs, T. van Dongen, J. J. M. Binsma, and E. J. Jansen, “1310-nm DBR-type MQW gain-clamped semiconductor optical amplifiers with AM-CATV-grade linearity,” IEEE Photon. Technol. Lett., 8 (11), 1453-1455 (1996).

    Article  Google Scholar 

  • L. F. Tiemeijer, P. J. A. Thijs, T. van Dongen, J. J. M. Binsma, E. J. Jansen, and S. Walczyk, “33 dB fiber to fiber gain +13 dBm fiber saturation power polarization independent 1310 nm MQW laser amplifier,” in Optical Amplifiers and their Applications, OAA ‘95, Technical Digest, Davos, Switzerland, 1995, paper PD1.

  • P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. G. Provost, D. Leclerc, and M. Klenk, “1.55 μm polarization independent semiconductor- optical amplifier with 25 dB fiber to fiber gain,” Photon. Technol. Lett., 6, 170-172 (1994).

    Article  Google Scholar 

  • P. Doussiere, F. Pommerau, D. Leclerc, R. Ngo, M. Goix, T. Fillion, P. Bousselet, and G. Laube, “Polarization independent 1550 nm semiconductor optical amplifier packaged module with 29 dB fiber to fiber gain,” in Optical Amplifiers and their Applications, OAA ‘95, Technical Digest, Davos, Switzerland, pp. 119-122, 1995.

  • K. Magari, M. Okamoto, and Y. Noguchi, “1.55 μm polarisation-insensitive high-gain tensile-strained-barrier MQW optical amplifier,” IEEE Photon. Technol. Lett., 3, 998-1000 (1991).

    Google Scholar 

  • M. Newkirk, B. Miller, U. Koren, M. Chien, R. Jopson, and C. Burrus, “1.5 μm multiquantum-well semiconductor optical amplifier with tensile compressively strained wells for polarisation-independent gain,” IEEE Photon. Technol. Lett., 5, 406-408 (1993).

    Google Scholar 

  • A. E. Kelly, I. F. Lealman, L. J. Rivers, S. D. Perrin, and M. Silver, “Low noise figure (7.2 dB) and high gain (29 dB) semiconductor optical amplifier with a single layer ar coating,” Electron. Lett., 33, 536-538 (1997).

    Article  Google Scholar 

  • A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett., 84 (7), 1058-1060 (2004).

    CAS  Google Scholar 

  • T. Akiyama, K. Kawaguchi, M. Sugawara, H. Sudo, M. Ekawa, H. Ebe, A. Kuramata, K. Otsubo, K. Morito, and Y. Arakawa, “A semiconductor optical amplifier with an extremely-high penalty-free output power of 20 dBm achieved with quantum dots,” in Proc. 29th Europ. Conf. on Opt. Comm. (ECOC’03), Rimini (Italy), September 2003, post-deadline paper Th4.4.3.

  • M. J. Adams, D. A. O. Davies, M. C. Tatham, and M. A. Fisher, “Nonlinearities in semiconductor laser amplifiers,” Optical and Quantum Electronics, 27, 1-13 (1995).

    CAS  Google Scholar 

  • K. J. Ebeling, Integrierte Optoelektronik (Berlin: Springer-Verlag, 1989).

  • C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron., 18 (2), 259-264 (1982).

    Google Scholar 

  • J. Wiesenfeld, “Gain dynamics and associated nonlinearities in semiconductor optical amplifiers,” J. High Speed Electron. Syst., 7, 179-222 (1996).

    CAS  Google Scholar 

  • B. R. Bennett, R. A. Soref, and J. A. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron., 26 (1), 113-122 (1990).

    Google Scholar 

  • R. Manning, A. Ellis, A. Poustie, and K. Blow, “Semiconductor laser amplifier for ultrafast all-optical signal processing,” J. Opt. Soc. Am. B, 14, 3204-3216 (1997).

    CAS  Google Scholar 

  • K. L. Hall, G. Lenz, E. P. Ippen, U. Koren, and G. Raybon, “Carrier heating and spectral hole burning in strained-layer quantum-well laser amplifiers at 1.5 μm,” Appl. Phys. Lett., 61, 2512-2514 (1993).

    Article  Google Scholar 

  • K. L. Hall, A. M. Darwish, E. P. Ippen, U. Koren, and G. Raybon, “Femtosecond index nonlinearities in InGaAsP optical amplifiers,” Appl. Phys. Lett., 62 (12), 1320-1322 (1993).

    CAS  Google Scholar 

  • A. Uskov, J. Mork, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron., 30, 1769-1781 (1994).

    CAS  Google Scholar 

  • J. Mork, T. W. Berg, M. L. Nielsen, and A. V. Uskov, “The role of fast carrier dynamics in SOA based devices,” IEICE Trans. Electron., E87-C, 1126-1133 (2004).

    Google Scholar 

  • S. Diez, R. Ludwig, and H.G. Weber, “Gain-transparent SOA-switch for high-bitrate OTDM Add/Drop multiplexing,” IEEE Photon. Technol. Lett., 11 (1), 60-62 (1999).

    Google Scholar 

  • S. Diez, R. Ludwig, and H.G. Weber, “All-optical switch for TDM and WDM/TDM systems demonstrated in a 640 Gbit/s demultiplexing experiment,” Electron. Lett., 34 (8), 803-804 (1998).

    Google Scholar 

  • L. Schares, C. Schubert, C. Schmidt, H.G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10 to 40 GHz,” IEEE J. Quantum Electron., 39 (11), 1394-1408 (2003).

    CAS  Google Scholar 

  • S. Diez, “All-optical signal processing by gain-transparent semiconductor switches,” Ph.D. dissertation, Technical University Berlin, 2000.

  • Y. Ueno, S. Nakamura, and K. Tajima, “Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160 GHz range for use in ultrahigh-speed all-optical signal processing,” J. Opt. Soc. Am. B, 19 (11), 2573-2589 (2002).

    CAS  Google Scholar 

  • C. Schubert, “Interferometric gates for all-optical signal processing,” Ph.D. dissertation, Technical University Berlin, 2004.

  • C. Schubert, J. Berger, S. Diez, H. J. Ehrke, R. Ludwig, U. Feiste, C. Schmidt, H.G. Weber, G. Toptchiyski, S. Randel, and K. Petermann, “Comparison of interferometric all-optical switches for demultiplexing applications in high-speed OTDM systems,” , 20 (4), 618-624 (2002).

    Article  Google Scholar 

  • M. Eiselt, W. Pieper, and H.G. Weber, “All-optical demultiplexing with a semiconductor laser amplifier in a loop mirror,” Electron. Lett., 29, 1167-1169 (1993).

    CAS  Google Scholar 

  • M. Eiselt, W. Pieper, and H.G. Weber, “Slalom: Semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol., 13, 2099-2012 (1995).

    Article  Google Scholar 

  • J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett., 5, 787-790 (1993).

    Article  Google Scholar 

  • J. P. Sokoloff, I. Glesk, P. R. Prucnal, and R. K. Boncek, “Performance of a 50 Gbit/s optical time domain multiplexed system using a terahertz optical asymmetric demultiplexer,” IEEE Photon. Technol. Lett., 6, 98-100 (1994).

    Article  Google Scholar 

  • N. S. Patel, K. A. Rauschenbach, and K. L. Hall, “40 Gb/s demultiplexing using an ultrafast nonlinear interferometer (UNI),” IEEE Photon. Technol. Lett., 8 (12), 1695-1697 (1996).

    Article  Google Scholar 

  • N. S. Patel, K. L. Hall, and K. A. Rauschenbach, “Interferometric all-optical switches for ultrafast signal processing,” Appl. Optics, 37, 2831-2842 (1998).

    Google Scholar 

  • R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P. A. Besse, M. Dulk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett., 10 (1), 165-167 (1998).

    Article  Google Scholar 

  • K. Tajima, S. Nakamura, A. Furukawa, and T. Sasaki, “Hybrid-integrated symmetric Mach-Zehnder all-optical switches and ultrafast signal processing,” IEICE Trans. Electron., E87-C, 1119-1125 (2004).

    Google Scholar 

  • R. Ludwig, U. Feiste, S. Diez, C. Schubert, C. Schmidt, H. J. Ehrke, and H.G. Weber, “Unrepeatered 160 Gbit/s RZ single-channel transmission over 160 km of standard fiber at 1.55 μm with hybrid MZI optical demultiplexer,” Electron. Lett., 36 (16), 1405-1406 (2000).

    Article  Google Scholar 

  • R. Ludwig and G. Raybon, “All-optical demultiplexing using ultrafast four-wave mixing in a semiconductor laser amplifier at 20 Gbit/s,” in ECOC ‘93, Montreux, Switzerland, 1993, pp. 57-60.

  • S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, and M. Saruwatari, “100 Gbit/s all-optical demultiplexing using four-wave mixing in a travelling wave laser diode amplifier,” Electron. Lett., 30, 981-982 (1994).

    Article  Google Scholar 

  • T. Morioka, H. Takara, S. Kawanishi, K. Uchiyama, and M. Saruwatari, “Polarisation-independent all-optical demultiplexing up to 200Gbit/s using four-wave mixing in a semiconductor laser amplifier,” Electron. Lett., 32 (9), 840-842 (1996).

    Article  Google Scholar 

  • R. Ludwig, W. Pieper, R. Schnabel, S. Diez, and H.G. Weber, “Four-wave mixing in semiconductor laser amplifiers: application for optical communication systems,” Fiber and Integrated Optics, 16, 211-223 (1996).

    Google Scholar 

  • M. Shtaif and G. Eisenstein, “Analytical solution of wave mixing between short optical pulses in a semiconductor optical amplifier,” Appl. Phys. Lett., 66, 1458-1460 (1995).

    CAS  Google Scholar 

  • M. Shtaif, R. Nagar, and G. Eisenstein, “Four-wave mixing among short optical pulses in semiconductor optical amplifiers,” Photon. Technol. Lett., 7, 1001-1003 (1995).

    Article  Google Scholar 

  • J. Mork and A. Mecozzi, “Theory of nondegenerate four-wave mixing between pulses in a semiconductor waveguide,” IEEE J. Quantum Electron., 33 (4), 183-195 (1997).

    Article  Google Scholar 

  • S. Scotti and A. Mecozzi, “Frequency converters based on FWM in traveling-wave optical amplifiers: Theoretical aspects,” Fiber and Integrated Optics, 15 (3), 243-256 (1996).

    Google Scholar 

  • S. Diez, C. Schmidt, R. Ludwig, H.G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Selected Top. Quantum Electron., 3, 1131-1145 (1997).

    Article  Google Scholar 

  • M. Eiselt, “Optimum pump pulse selection for demultiplexer application of four-wave mixing in semiconductor laser amplifiers,” Photon. Technol. Lett., 7, 1312-1314 (1995).

    Article  Google Scholar 

  • R. Schnabel, U. Hilbk, T. Hermes, P. Meissner, C. von Helmholt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Kuller, and H.G. Weber, “Polarization insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor-laser amplifier,” Photon. Technol. Lett., 6, 56-58 (1994).

    Article  Google Scholar 

  • U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. J. Ehrke, D. Razic, and H.G. Weber, “40 Gbit/s transmission over 434 km standard fibre using polarisation independent mid-span spectral inversion,” Electron. Lett., 34 (21), 2044-2045 (1998).

    Article  Google Scholar 

  • J. P. R. Lacey, M. A. Summerfield, and S. J. Madden, “Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol., 16 (12), 2419-2427 (1998).

    Article  Google Scholar 

  • S. Diez, R. Ludwig, E. Patzak, H.G. Weber, G. Eisenstein, and R. Schimpe, “Four-wave mixing in semiconductor-laser amplifiers: phase matching in configurations with three input waves,” in CLEO ‘96, Anaheim, USA, pp. 505-506, 1996.

  • P. Cortes, M. Chbat, S. Artigaud, J. Beylat, and J. Chesnoy, “Below 0.3 dB polarization penalty in 10 Gbit/s directly modulated DFB signal over 160 km using mid-span spectral inversion in a semiconductor laser amplifier,” in ECOC ‘95, pp. 271-274, 1995.

  • S. Diez, R. Ludwig, C. Schmidt, U. Feiste, and H.G. Weber, “160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett., 11 (11), 1402-1404 (1999).

    Article  Google Scholar 

  • T. Morioka, S. Kawanishi, H. Takahara, and M. Saruwatari, “Multiple output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly chirped square pulse,” Electron. Lett., 30, 1959-1961 (1994).

    Article  Google Scholar 

  • E. Jahn, N. Agrawal, M. Arbert, D. Franke, R. Ludwig, W. Pieper, H.G. Weber, and C. M. Weinert, “40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers,” Electron. Lett., 31, 1857-1858 (1995).

    Article  Google Scholar 

  • T. Tekin, C. Schubert, J. Berger, M. Schlak, B. Mau, W. Brinker, R. Molt, H. Ehlers, M. Gravert, and H.-P. Nolting, “160 Gbit/s error-free all-optical demultiplexing using monolithically integrated band gap shifted Mach-Zehnder interferometer (GS-MZI),” in Techn. Dig. of Conf. on Integrated Photonics Research, IPR’02, Vancouver, Canada, July 2002, paper IWC4.

  • M. Heid, S. Spalter, G. Mohs, A. Farbert, W. Vogt, and H. Melchior, “160-Gbit/s demultiplexing based on a monolithically integrated Mach-Zehnder interferometer,” in Proc. 27th Europ. Conf. on Opt. Comm. (ECOC’01), Amsterdam, The Netherlands, 2001, pp. 82-83, post-deadline paper PD.B.1.8.

  • R. Hess, M. Duelk, W. Vogt, E. Gamper, E. Gini, P. A. Besse, H. Melchior, K. S. Jepsen, B. Mikkelsen, M. Vaa, H. N. Poulsen, A. T. Claussen, K. E. Stubkjaer, S. Bouchoule, and F. Devaux, “Simultaneous all-optical add and drop multiplexing of 40 Gbit/s OTDM signals using monolithically integrated Mach-Zehnder Interferometer,” Electron. Lett., 34, 579-580 (1998).

    Article  Google Scholar 

  • M. Vaa, B. Mikkelsen, K. S. Jepsen, K. E. Stubkjaer, M. Schilling, K. Daub, E. Lach, G. Laube, W. Idler, K. Wunstel, S. Bouchoule, C. Kazmierski, and D. Mathoorasing, “A bit-rate flexible and power efficient all-optical demultiplexer realized by monolithically integrated Michelson interferometer,” Proc. 22nd Europ. Conf. Opt. Commun. (ECOC’96), 1996, paper ThB 3.3.

  • S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168 Gb/s data pulses with a hybrid-integrated symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett., 12 (4), 425-427 (2000).

    Article  Google Scholar 

  • S. Nakamura, Y. Ueno, and K. Tajima, “Error-free all-optical demultiplexing at 336 Gb/s with a hybrid-integrated Symmetric-Mach-Zehnder switch,” in OSA Trends in Optics and Photonics (TOPS) Vol. 55, Optical Fiber Commun. Conf., Technical Digest, Postconference Edition, Anaheim, USA, March 2002, post-deadline paper FD3.

  • A. Suziki, X. Wang, Y. Ogawa, and S. Nakamura, “10x320Gb/s (3.2Tb/s) DWDM/OTDM transmission in C-band by semiconductor-based devices,” in Proc. 30th Europ. Conf. on Opt. Comm. (ECOC’04), Stockholm (Sweden), 2004, pp. 14-15 (PD-Papers), post-deadline paper Th4.1.7.

  • C. Schubert, J. Berger, U. Feiste, R. Ludwig, C. Schmidt, and H.G. Weber, “160 Gb/s polarization insensitive all-optical demultiplexing using a gain-transparent Ultrafast-Nonlinear Interferometer (GT-UNI),” IEEE Photon. Technol. Lett., 13 (11), 1200-1202 (2001).

    Article  Google Scholar 

  • C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H.G. Weber, G. Toptchiyski, K. Petermann, and V. Krajinovic, “160 Gb/s all-optical demultiplexing using a gain-transparent Ultrafast-Nonlinear Interferometer (GT-UNI),” IEEE Photon. Technol. Lett., 13 (5), 475-477 (2001).

    Article  Google Scholar 

  • U. Feiste, R. Ludwig, C. Schubert, J. Berger, C. Schmidt, H.G. Weber, A. Munk, B. Schmauss, B. Buchhold, D. Briggmann, F. Kueppers, and F. Rumpf, “160 Gbit/s transmission over 116 km field-installed fiber using 160 Gbit/s OTDM and 40 Gbit/s ETDM,” Electron. Lett., 37 (7), 443-445 (2001).

    Article  Google Scholar 

  • C. Schubert, C. Schmidt, S. Ferber, R. Ludwig, and H.G. Weber, “Error-free all-optical add-drop multiplexing at 160 Gbit/s,” Electron. Lett., 39 (14), 1074-1076 (2003).

    Article  Google Scholar 

  • C. Schubert, C. Schmidt, S. Ferber, R. Ludwig, and H.G. Weber, “Error-free all-optical add-drop multiplexing at 160 Gbit/s,” in OSA Trends in Optics and Photonics (TOPS) Vol. 86, Optical Fiber Commun. Conf., Technical Digest, Postconference Edition, Atlanta, Georgia, USA, March 23-28 2003, postdeadline paper PD17.

  • J. P. Turkiewicz, E. Tangdiongga, G. D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E. S. R. Sikora, Y. R. Zhou, A. Lord, and D. Payne, “Field trial of 160 Gbit/s OTDM add/drop node in a link of 275 km deployed fiber,” in Proc. 29th Opt. Fiber Commun. Conf. (OFC’04), Los Angeles (USA), February 2004, post-deadline paper PDP1.

  • T. Tekin, M. Schlak, C. Schmidt, and C. Schubert, “The influence of gain and phase dynamics in the integrated GS-SOA on the switching performance of the monolithically integrated GS-MZI,” in Integrated Photonics Research, July 2004, p. paper IWC4.

  • E. Jahn, N. Agrawal, H. J. Ehrke, R. Ludwig, W. Pieper, and H.G. Weber, “Monolithically integrated asymmetric Mach-Zehnder interferometer as a 20 Gbit/s all-optical add/drop multiplexer for OTDM systems,” Electron. Lett., 32, 216-217 (1996).

    Article  Google Scholar 

  • S. Fischer, M. Dulk, E. Gamper, W. Vogt, W. Hunziker, E. Gini, H. Melchior, A. Buxens, H. N. Poulsen, and A. T. Clausen, “All-optical regenerative OTDM add-drop multiplexing at 40 Gb/s using monolithic InP Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett., 12 (3), 335-337 (2000).

    Article  Google Scholar 

  • H. N. Poulsen, A. T. Clausen, A. Buxens, L. Oxenloewe, C. Peucheret, A. Kloch, T. Fjelde, D. Wolfson, and P. Jeppesen, “Ultra fast all-optical signal processing in semiconductor and fiber based devices,” in Proc. 26th Europ. Conf. Opt. Commun. (ECOC’00), Munich (Germany), September 2000, vol. 3 paper 7.4.1.

  • M. Saruwatari, “All-optical signal processing for terabit/ second optical transmission,” IEEE J. Sel. Top. Quant., 6 (6), 1363-1374 (2000).

    CAS  Google Scholar 

  • O. Kamatani and S. Kawanishi, “Prescaled timing extraction from 400 Gb/s optical signal using a phase lock loop based on four-wave-mixing in a laser diode amplifier,” IEEE Photon. Technol. Lett., 8 (8), 1094-1096 (1996).

    Article  Google Scholar 

  • T. Yamamoto, L. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H.G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loop with interferometric optical switch based on semiconductor optical amplifier,” Electron. Lett., 37 (8), 509-510l (2001).

    Article  Google Scholar 

  • T. Yamamoto, U. Feiste, J. Berger, C. Schubert, C. Schmidt, R. Ludwig, and H.G. Weber, “160 Gbit/s demultiplexer with clock recovery using SOA-based interferometric switches and its application to 120 km fiber transmission,” in Proc. 27th Europ. Conf. on Opt. Comm. (ECOC’01), Amsterdam, The Netherlands, Sep. 30-Oct. 4 2001, pp. 192-193.

  • C. Schubert, C. Schmidt, C. B\”orner, E. Dietrich, S. Ferber, R. Ludwig, and H.G. Weber, “A gain-transparent ultrafast-nonlinear interferometer (GT-UNI) in a 160 Gb/s optical sampling system,” in Techn. Dig. of Optical Amplifiers and their Applications, OAA, 2002, paper OTuD5.

  • C. Schmidt, C. Schubert, S. Watanabe, F. Futami, R. Ludwig, and H.G. Weber, “320 Gb/s all-optical eye diagram sampling using gain-transparent ultrafast nonlinear interferometer (GT-UNI),” in Proc. 28th Europ. Conf. on Opt. Comm. (ECOC’02), Copenhagen, Denmark, 2002, paper 2.1.3.

  • L. A. Jiang, E. P. Ippen, U. Feiste, S. Diez, E. Hilliger, C. Schmidt, and H.G. Weber, “Sampling pulses with semiconductor optical amplifiers,” IEEE J. Quantum Electron., 37 (1), 118-126 (2001).

    CAS  Google Scholar 

  • K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quant., 6 (6), 1428-1435 (2000).

  • J. Leuthold, C. Joyner, B. Mikkelsen, G. Raybon, J. Pleumeekers, B. Miller, K. Dreyer, and C. Burrus, “100 Gbit/ all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett., 36 (13), 1129-1130 (2000).

    Article  Google Scholar 

  • S. Nakamura, Y. Ueno, and K. Tajima, “Error-free all-optical data pulse regeneration at 84 Gbps and wavelength conversion at 168 Gbps with Symmetric Mach-Zehnder all-optical switches,” in Techn. Dig. of Optical Amplifiers and their Applications, OAA’00, 2000, pp. PD 4-1.

  • L. F. Tiemeijer, P. J. A. Thijs, T. v. Dongen, J. J. M. Binsma, E. J. Jansen, and H. R. J. R. van Helleputte, “Reduced intermodulation distortion in 1300 nm gain-clamped MQW laser amplifiers,” IEEE Photon. Technol. Lett., 7 (3), 284-286 (1995).

    Article  Google Scholar 

  • M. Bachmann, P. Doussiere, J. Y. Emery, R. N’Go, F. Pommereau, L. Goldstein, G. Soulage, and A. Jourdan, “Polarisation-insensitive clamped-gain SOA with integrated spot-size convertor and DBR gratings for WDM applications at 1.55μm wavelength,” Electron. Lett., 32 (22), 2076-2077 (1996).

    Article  Google Scholar 

  • C. Holtmann, P. A. Besse, and H. Melchior, “Gain-clamped semiconductor optical amplifier for 1300 nm wavelength an 20 dB polarization independent fiber-to-fiber gain and significantly reduced pulse shape and intermodulation distortions,” Proc. 21st Europ. Conf. Opt. Commun. (ECOC’95), pp. 1031-1034, 1995.

  • P. Doussiere, F. Pommereau, J. Y. Emery, R. Ngo, J. L. Lafragette, P. Aubert, L. Goldstein, G. Soulage, T. Ducellier, and M. Bachmann, “1550 nm polarization independent DBR gain clamped SOA with high dynamic input power range,” in Proc. 22nd Europ. Conf. Opt. Commun. (ECOC’96), vol. 3, Oslo, Norway, 1996, pp. 169-172, paper WeD.2.4.

  • J. C. Simon, L. Billes, A. Dupas, and L. Bramerie, “All optical regeneration techniques,” in Proc. 25th Europ. Conf. Opt. Commun. (ECOC’99), Nice (France), September 1999, vol. II, pages 256-259

  • A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, “80 Gbit/s all-optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer,” Electron. Lett., 35 (17), 1477-1478 (1999).

    Article  Google Scholar 

  • Y. Ueno, S. Nakamura, and K. Tajima, “Penalty-free error-free all-optical data pulse regeneration at 84 Gbps with Symmetric-Mach-Zehnder-type regenerator,” in OSA Trends in Optics and Photonics (TOPS) Vol. 54, Optical Fiber Commun. Conf., Technical Digest, Postconference Edition, 2001, pp. MG 5-1.

  • G. Grosskopf, R. Ludwig, and H.G. Weber, “140 Mbit/s DPSK transmission using an all-optical frequency converter with a 4000 GHz range,” Electron. Lett., 24, 1106-1107 (1988).

    Google Scholar 

  • T. Morgan, J. Lacey, and R. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett., 10, 1401-1403 (1998).

    Google Scholar 

  • D. F. Geraghty, R. B. Lee, K. J. Vahala, M. Verdiell, M. Ziari, and A. Mathur, “Wavelength conversion up to 18 nm at 10 Gb/s by four-wave mixing in a semiconductor optical amplifiers,” Photon. Technol. Lett., 9, 452-454 (1997).

    Article  Google Scholar 

  • A. E. Kelly, A. D. Ellis, D. Nesset, R. Kashyap, and D. G. Moodie, “100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett., 34 (20), 1955-1956 (1998).

    Article  Google Scholar 

  • A. Ellis, M. Tatham, D. Davies, D. Nesset, D. Moodie, and G. Sherlock, “40 Gbit/s transmission over 202 km of standard fibre using midspan spectral inversion,” Electron. Lett., 31, 299-301 (1995).

    Article  Google Scholar 

  • D. D. Marcenac, D. Nesset, A. E. Kelly, M. Brierley, A. D. Ellis, D. G. Moodie, and C. W. Ford, “40 Gbit/s transmission over 406 km of NDSF using mid-span spectral inversion by four-wave-mixing in a 2 mm long semiconductor optical amplifier,” Electron. Lett., 33 (10), 879-880 (1997).

    Article  Google Scholar 

  • U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H.-J. Ehrke, E. Patzak, H.G. Weber, and T. Merker, “80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a sagnac-interferometer,” IEEE Photon. Technol. Lett., 11 (8), 1063-1065 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, C., Ludwig, R. & Weber, HG. High-speed optical signal processing using semiconductor optical amplifiers. J Optic Comm Rep 2, 171–208 (2005). https://doi.org/10.1007/s10297-005-0036-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10297-005-0036-2

Keywords

Navigation