Skip to main content

Advertisement

Log in

Application of computational fluid dynamics (CFD) on the raceway design for the cultivation of microalgae: a review

  • Fermentation, Cell Culture and Bioengineering - Mini Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Microalgae are a potential solution to supersede fossil fuels and produce renewable energy. The major obstacle to the commercialization of microalgae-based biofuels is the high production cost, including nutritional requirements, photobioreactor design, and downstream processes. As for the photobioreactor design, open ponds have been adopted by major commercial plants for their economic advantages. Raceway is a popular type among open ponds. Nevertheless, the fluid dynamics of the raceway operation is quite complex. Software simulation based on Computational Fluid Dynamics is an upcoming strategy for optimizing raceway design. The optimization intends to affect light penetration, particle distribution, mass transfer, and biological kinetics. This review discusses how this strategy can be helpful to design a highly productive raceway pond-based microalgal culture system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  PubMed  Google Scholar 

  2. Hreiz R, Sialve B, Morchain JO, Escudié R, Steyer JP, Guiraud P (2014) Experimental and numerical investigation of hydrodynamics in raceway reactors used for algaculture. Chem Eng J 250:230–239

    Article  CAS  Google Scholar 

  3. Spolare P, Duran E, Cassan CJ, Isambert A (2006) Commercial application of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  Google Scholar 

  4. Mobin S, Alam F (2017) Some promising microalgal species for commercial applications: a review. Energy Procedia 110:510–517

    Article  CAS  Google Scholar 

  5. Ojo EO, Auta H, Baganz F, Lye GJ (2015) Design and parallelisation of a miniature photobioreactor platform for microalgal culture evaluation and optimisation. Biochem Eng J 103:93–102

    Article  CAS  Google Scholar 

  6. Hase R, Oikawa H, Sasa C, Morita M, Watanabe Y (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai City. J Biosci Bioeng 89(2):157–163

    Article  CAS  PubMed  Google Scholar 

  7. Anderson RA (2008) Algal culturing techniques. Elsevier Science Publishing Co Inc, San Diego, United States

    Google Scholar 

  8. Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028

    Article  CAS  PubMed  Google Scholar 

  9. Zhang TY, Hu HY, Wu YH, Zhuang LL, Xu XQ, Wang XX, Dao GH (2016) Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production. Renew Sustain Energy Rev 60:1602–1614

    Article  CAS  Google Scholar 

  10. Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13(4):307–315

    Article  Google Scholar 

  11. Meng C, Huang J, Ye C, Cheng W, Chen J, Li Y (2015) Comparing the performances of circular ponds with different impellers by CFD simulation and microalgae culture experiments. Bioprocess Biosyst Eng 38(7):1347–1363

    Article  CAS  PubMed  Google Scholar 

  12. Sheehan J, Dunahay T, Beneman J, Roessler P (1998) A look back at the US department of energy’s aquatic species program: biodiesel from Algae. Natl Renew Energy Lab 72(6):580–24190

    Google Scholar 

  13. Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5(6):593–604

    Article  Google Scholar 

  14. Brantes L, Mendes B, Vermelho AB (2013) Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol Biofuels 6(1):152–168

    Article  CAS  Google Scholar 

  15. Yuan-Kun L (1997) Commercial production of microalgae in the Asia–Pacific rim. J Appl Phycol 9:403–411

    Article  Google Scholar 

  16. Razzak SA, Hossain MM, Lucky RA, Bassi AS, De Lasa H (2013) Integrated CO2capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sustain Energy Rev 27:622–653

    Article  CAS  Google Scholar 

  17. Shen Y, Yuan W, Pei ZP, Wu Q, Mao E (2009) Microalgae mass production methods. Trans ASABE 52(4):1275–1287

    Article  Google Scholar 

  18. Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sustain Energy Rev 16(6):4316–4342

    Article  CAS  Google Scholar 

  19. Do-Quang Z, Cockx A, Liné A, Roustan M (1998) Computational fluid dynamics applied to water and wastewater treatment facility modeling. Environ Eng Policy 1(3):137–147

    Article  Google Scholar 

  20. Daniel Fishman RM, Joanne Morello RP, Yang J (2010) National algal biofuels technology roadmap. Natl Renew Energy Lab 1:1–124

    Google Scholar 

  21. James SC, Boriah V (2010) Modeling algae growth in an open-channel raceway. Comput Biol 17(7):895–906

    Article  CAS  Google Scholar 

  22. Hadiyanto H, Elmore S, Van Gerven T, Stankiewicz A (2013) Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chem Eng J 217:231–239

    Article  CAS  Google Scholar 

  23. Liffman K, Paterson DA, Liovic P, Bandopadhayay P (2013) Comparing the energy efficiency of different high rate algal raceway pond designs using computational fluid dynamics. Chem Eng Res Des 91:221–226

    Article  CAS  Google Scholar 

  24. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  25. Lee IB, Bitog JP, Hong SW, Seo IH, Kwon KS, Bartzanas T, Kacira M (2013) The past, present and future of CFD for agro-environmental applications. Comput Electron Agric 93:168–183

    Article  Google Scholar 

  26. Chen Z, Zhang X, Jiang Z, Chen X, He H, Zhang X (2016) Light/dark cycle of microalgae cells in raceway ponds: effects of paddlewheel rotational speeds and baffles installation. Bioresour Technol 219:387–391

    Article  CAS  PubMed  Google Scholar 

  27. Prussi M, Buffi M, Casini D, Chiaramonti D, Martelli F, Carnevale M, Tredici MR, Rodolfi L (2014) Experimental and numerical investigations of mixing in raceway ponds for algae cultivation. Biomass Bioenerg 67:390–400

    Article  CAS  Google Scholar 

  28. Amini H, Wang L, Hashemisohi A, Shahbazi A, Bikdash M, Dukka YW (2018) An integrated growth kinetics and computational fluid dynamics model for the analysis of algal productivity in open raceway ponds. Comput Electron Agric 145:363–372

    Article  Google Scholar 

  29. Nikolaou A, Booth P, Gordon F, Yang J, Matar O, Chachuat B (2016) Multi-Physics Modeling of Light-Limited Microalgae Growth in Raceway Ponds. IFAC-PapersOnLine 49:324–329

    Article  Google Scholar 

  30. Park S, Li Y (2015) Integration of biological kinetics and computational fluid dynamics to model the growth of Nannochloropsis salina in an open channel raceway. Biotechnol Bioeng 112:923–933

    Article  CAS  PubMed  Google Scholar 

  31. Huang J, Qu X, Wan M, Ying J, Li Y, Zhu F, Wang J, Shen G, Chen J, Li W (2015) Investigation on the performance of raceway ponds with internal structures by the means of CFD simulations and experiments. Algal Res 10:64–71

    Article  Google Scholar 

  32. Moberg AK, Ellem GK, Jameson GJ, Herbertson JG (2012) Simulated cell trajectories in a stratified gas-liquid flow tubular photobioreactor. J Appl Phycol 24:357–363

    Article  CAS  Google Scholar 

  33. Min KJ, Lee J, Park KY (2018) Advanced wastewater treatment using filamentous algae in raceway ponds with underwater light. Energy Sour Part A Recover Util Environ Eff 41(14):1674–1682

    Article  CAS  Google Scholar 

  34. Perner-Nochta I, Posten C (2007) Simulations of light intensity variation in photobioreactors. J Biotechnol 131:276–285

    Article  CAS  PubMed  Google Scholar 

  35. Ali H, Cheema TA, Yoon HS, Do Y, Park CW (2015) Numerical prediction of algae cell mixing feature in raceway ponds using particle tracing methods. Biotechnol Bioeng 112:297–307

    Article  CAS  PubMed  Google Scholar 

  36. Slegers PM, Lösing MB, Wijffels RH, van Straten G, van Boxtel AJB (2013) Scenario evaluation of open pond microalgae production. Algal Res 2:358–368

    Article  Google Scholar 

  37. Marshall JS, Huang J (2010) Simulation of light-limited algae growth in homogeneous turbulence. Chem Eng Sci 65:3865–3875

    Article  CAS  Google Scholar 

  38. Öncel SS, Köse A (2016) Microalgal biotechnology: ethics and intellectual property rights. Deu Muhendis Fak Fen ve Muhendis 18:116–116

    Article  Google Scholar 

  39. Sompech K, Chisti Y, Srinophakun T (2012) Design of raceway ponds for producing microalgae. Biofuels 3:387–397

    Article  CAS  Google Scholar 

  40. Pires JCM, Alvim-Ferraz MCM, Martins FG (2017) Photobioreactor design for microalgae production through computational fluid dynamics: a review. Renew Sustain Energy Rev 79:248–254

    Article  CAS  Google Scholar 

  41. Gimbun J (2009) Assessment of the turbulence models for modelling of bubble column”. Inst Eng J Malays 70:57–64

    Google Scholar 

  42. Bitog JP, Lee IB, Lee CG, Kim KS, Hwang HS, Hong SW, Seo IH, Kwon KS, Mostafa E (2011) Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Comput Electron Agric 76:131–147

    Article  Google Scholar 

  43. Yang Z, Cheng J, Ye Q, Liu J, Zhou J, Cen K (2016) Decrease in light/dark cycle of microalgal cells with computational fluid dynamics simulation to improve microalgal growth in a raceway pond. Bioresour Technol 220:352–359

    Article  CAS  PubMed  Google Scholar 

  44. Zeng F, Huang J, Meng C, Zhu F, Chen J, Li Y (2013) Investigation on novel raceway pond with inclined paddle wheels through simulation and microalgae culture experiments. Synerg Ital 48:306–310

    Google Scholar 

  45. Matthijs HCP, Balke H, Van Hes UM, Kroon BMA, Mur LR, Binot RA (1996) Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol Bioeng 50:98–107

    Article  CAS  PubMed  Google Scholar 

  46. Grobbelaar JU (1991) The influence of light/dark cycles in mixed algal cultures on their productivity. Bioresour Technol 38:189–194

    Article  Google Scholar 

  47. Nedbal L, Tichý V, Xiong F, Grobbelaar JU (1996) Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol 8:325–333

    Article  CAS  Google Scholar 

  48. Chiesa M, Mathiesen V, Melheim JA, Halvorsen B (2005) Numerical simulation of particulate flow by the Eulerian–Lagrangian and the Eulerian–Eulerian approach with application to a fluidized bed. Comput Chem Eng 29:291–304

    Article  CAS  Google Scholar 

  49. Reyna-Velarde R, Cristiani-Urbina E, Hernández-Melchor DJ, Thalasso F, Cañizares-Villanueva RO (2010) Hydrodynamic and mass transfer characterization of a flat-panel airlift photobioreactor with high light path. Chem Eng Process Process Intensif 49:97–103

    Article  CAS  Google Scholar 

  50. Chisti Y, Kasper M, Murray MY (1990) Mass transfer in external-loop airlift bioreactors using static mixers. Can J Chem Eng 68:45–50

    Article  CAS  Google Scholar 

  51. Dhotre MT, Joshi JB (2007) Design of a gas distributor : three-dimensional CFD simulation of a coupled system consisting of a gas chamber and a bubble column. Chem Eng J 125:149–163

    Article  CAS  Google Scholar 

  52. Simonnet M, Gentric C, Olmos E, Midoux N (2008) CFD simulation of the flow field in a bubble column reactor: importance of the drag force formulation to describe regime transitions. Chem Eng Process 47:1726–1737

    Article  CAS  Google Scholar 

  53. Wu B (2012) Integration of mixing, heat transfer, and biochemical reaction kinetics in anaerobic methane fermentation. Biotechnol Bioeng 109:2864–2874

    Article  CAS  PubMed  Google Scholar 

  54. Chen Z, Zhang X, Jiang Z, Chen X, He H, Zhang X (2016) Light/dark cycle of microalgae cells in raceway ponds: Effects of paddlewheel rotational speeds and baffles installation. Bioresour Technol 219:387–391

    Article  CAS  PubMed  Google Scholar 

  55. Pandey R, Sahu A, Krishnan V, Premalatha M (2015) Studies on light intensity distribution inside an open pond. Bioprocess Biosyst Eng 38:1547–1557

    Article  CAS  PubMed  Google Scholar 

  56. Berberoglu H, Gomez PS, Pilon L (2009) Radiation characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. used for fixation and biofuel production. J Quant Spectrosc Radiat Transf 110:1879–1893

    Article  CAS  Google Scholar 

  57. Amini H, Hashemisohi A, Wang L, Shahbazi A, Bikdash M, Dukka YW (2016) Numerical and experimental investigation of hydrodynamics and light transfer in open raceway ponds at various algal cell concentrations and medium depths. Chem Eng Sci 156:11–23

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this study received from Taiwan’s Ministry of Science and Technology (MOST) under Grant nos. MOST 105-2621-M-029-003-MY2 and 104-2628-E-029-003-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wei Yen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusmayadi, A., Suyono, E.A., Nagarajan, D. et al. Application of computational fluid dynamics (CFD) on the raceway design for the cultivation of microalgae: a review. J Ind Microbiol Biotechnol 47, 373–382 (2020). https://doi.org/10.1007/s10295-020-02273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-020-02273-9

Keywords

Navigation