Skip to main content
Log in

Engineering a growth-phase-dependent biosynthetic pathway for carotenoid production in Saccharomyces cerevisiae

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Metabolic engineering is usually focused on static control of microbial cell factories to efficient production of interested chemicals, though heterologous pathways compete with endogenous metabolism. However, products like carotenoids may cause metabolic burden on engineering strains, thus limiting product yields and influencing strain growth. Herein, a growth-phase-dependent regulation was developed to settle this matter, and its efficiency was verified using the heterogenous biosynthesis of lycopene in Saccharomyces cerevisiae as an example. Through growth-phase-dependent control of the lycopene biosynthetic pathway, limited step in MVA pathway, and competitive squalene pathway, production yield was increased by approximately 973-fold (from 0.034- to 33.1-mg/g CDW) and 1.48 g/L of production was obtained by one-stage fermentation in a 5-L bioreactor. Our study not only introduces an economically approach to the production of carotenoids, but also provides an example of dynamic regulation of biosynthetic pathways for metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burg JM, Cooper CB, Ye Z, Reed BR, Moreb EA, Lynch MD (2016) Large-scale bioprocess competitiveness: the potential of dynamic metabolic control in two-stage fermentations. Curr Opin Chem Eng 14:121–136. https://doi.org/10.1016/j.coche.2016.09.008

    Article  Google Scholar 

  2. Carvalho N, Coelho E, Gales L, Costa V, Teixeira JA, Moradas-Ferreira P (2016) Production of orotic acid by a Klura3Delta mutant of Kluyveromyces lactis. J Biosci Bioeng 121:625–630. https://doi.org/10.1016/j.jbiosc.2015.10.008

    Article  CAS  PubMed  Google Scholar 

  3. Chen X, Zhu P, Liu L (2016) Modular optimization of multi-gene pathways for fumarate production. Metab Eng 33:76–85. https://doi.org/10.1016/j.ymben.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  4. Chen Y, Wang Y, Liu M, Qu J, Yao M, Li B, Ding M, Liu H, Xiao W, Yuan Y (2019) Primary and Secondary Metabolic Effects of a Key Gene Deletion (DeltaYPL062W) in Metabolically Engineered Terpenoid-Producing Saccharomyces cerevisiae. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01990-18

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen Y, Xiao W, Wang Y, Liu H, Li X, Yuan Y (2016) Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microb Cell Fact 15:113. https://doi.org/10.1186/s12934-016-0509-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Curran KA, Morse NJ, Markham KA, Wagman AM, Gupta A, Alper HS (2015) Short Synthetic Terminators for Improved Heterologous Gene Expression in Yeast. ACS Synth Biol 4:824–832. https://doi.org/10.1021/sb5003357

    Article  CAS  PubMed  Google Scholar 

  7. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759. https://doi.org/10.1038/nbt.1557

    Article  CAS  PubMed  Google Scholar 

  8. Gupta A, Reizman IM, Reisch CR, Prather KL (2017) Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol 35:273–279. https://doi.org/10.1038/nbt.3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hedl M, Tabernero L, Stauffacher CV, Rodwell VW (2004) Class II 3-hydroxy-3-methylglutaryl coenzyme A reductases. J Bacteriol 186:1927–1932. https://doi.org/10.1128/jb.186.7.1927-1932.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hong J, Park SH, Kim S, Kim SW, Hahn JS (2019) Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Appl Microbiol Biotechnol 103:211–223. https://doi.org/10.1007/s00253-018-9449-8

    Article  CAS  PubMed  Google Scholar 

  11. Jin W, Xu X, Jiang L, Zhang Z, Li S, Huang H (2015) Putative carotenoid genes expressed under the regulation of Shine-Dalgarno regions in Escherichia coli for efficient lycopene production. Biotechnol Lett 37:2303–2310. https://doi.org/10.1007/s10529-015-1922-1

    Article  CAS  PubMed  Google Scholar 

  12. Kang W, Ma T, Liu M, Qu J, Liu Z, Zhang H, Shi B, Fu S, Ma J, Lai LTF, He S, Qu J, Wing-Ngor AuS, Ho Kang B, Yu Lau WC, Deng Z, Xia J, Liu T (2019) Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. Nat commun 10:4248. https://doi.org/10.1038/s41467-019-12247-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keung AJ, Joung JK, Khalil AS, Collins JJ (2015) Chromatin regulation at the frontier of synthetic biology. Nat Rev Genet 16:159–171. https://doi.org/10.1038/nrg3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krivoruchko A, Zhang Y, Siewers V, Chen Y, Nielsen J (2015) Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng 28:28–42. https://doi.org/10.1016/j.ymben.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  15. Lalwani MA, Zhao EM, Avalos JL (2018) Current and future modalities of dynamic control in metabolic engineering. Curr Opin Biotechnol 52:56–65. https://doi.org/10.1016/j.copbio.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  16. Lian J, Mishra S, Zhao H (2018) Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab Eng 50:85–108. https://doi.org/10.1016/j.ymben.2018.04.011

    Article  CAS  PubMed  Google Scholar 

  17. Liu D, Mannan AA, Han Y, Oyarzun DA, Zhang F (2018) Dynamic metabolic control: towards precision engineering of metabolism. J Ind Microbiol Biotechnol 45:535–543. https://doi.org/10.1007/s10295-018-2013-9

    Article  CAS  PubMed  Google Scholar 

  18. Ma SM, Garcia DE, Redding-Johanson AM, Friedland GD, Chan R, Batth TS, Haliburton JR, Chivian D, Keasling JD, Petzold CJ, Lee TS, Chhabra SR (2011) Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases. Metab Eng 13:588–597. https://doi.org/10.1016/j.ymben.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  19. Ma T, Shi B, Ye Z, Li X, Liu M, Chen Y, Xia J, Nielsen J, Deng Z, Liu T (2019) Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng 52:134–142. https://doi.org/10.1016/j.ymben.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  20. Moon TS, Dueber JE, Shiue E, Prather KL (2010) Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng 12:298–305. https://doi.org/10.1016/j.ymben.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  21. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31:1120–1123. https://doi.org/10.1093/bioinformatics/btu743

    Article  CAS  PubMed  Google Scholar 

  22. Niu FX, Lu Q, Bu YF, Liu JZ (2017) Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels. Synth Syst Biotechnol 2:167–175. https://doi.org/10.1016/j.synbio.2017.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  23. Papapetridis I, van Dijk M, Dobbe AP, Metz B, Pronk JT, van Maris AJ (2016) Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Microb Cell Fact 15:67. https://doi.org/10.1186/s12934-016-0465-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Partow S, Siewers V, Bjorn S, Nielsen J, Maury J (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27:955–964. https://doi.org/10.1002/yea.1806

    Article  CAS  PubMed  Google Scholar 

  25. Reider Apel A, d'Espaux L, Wehrs M, Sachs D, Li RA, Tong GJ, Garber M, Nnadi O, Zhuang W, Hillson NJ, Keasling JD, Mukhopadhyay A (2017) A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Res 45:496–508. https://doi.org/10.1093/nar/gkw1023

    Article  CAS  PubMed  Google Scholar 

  26. Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, Daviet L, Nielsen J, Siewers V (2012) Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene alpha-santalene in a fed-batch mode. Metab Eng 14:91–103. https://doi.org/10.1016/j.ymben.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  27. Scott KJ (2001) Detection and measurement of carotenoids by UV/VIS spectrophotometry. Curr Protoc Food Anal Chem F2.2.1–F2.2.10

  28. Shi B, Ma T, Ye Z, Li X, Huang Y, Zhou Z, Ding Y, Deng Z, Liu T (2019) Systematic Metabolic Engineering of Saccharomyces cerevisiae for Lycopene Overproduction. J Agric Food Chem 67:11148–11157. https://doi.org/10.1021/acs.jafc.9b04519

    Article  CAS  PubMed  Google Scholar 

  29. Sun J, Shao Z, Zhao H, Nair N, Wen F, Xu JH, Zhao H (2012) Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol Bioeng 109:2082–2092. https://doi.org/10.1002/bit.24481

    Article  CAS  PubMed  Google Scholar 

  30. Tan SZ, Prather KL (2017) Dynamic pathway regulation: recent advances and methods of construction. Curr Opin Chem Biol 41:28–35. https://doi.org/10.1016/j.cbpa.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  31. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:4342–4350. https://doi.org/10.1128/AEM.02759-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu S, Letchworth GJ (2004) High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques 36:152–154. https://doi.org/10.2144/04361DD02

    Article  CAS  PubMed  Google Scholar 

  33. Wu XL, Li BZ, Zhang WZ, Song K, Qi H, Dai JB, Yuan YJ (2017) Genome-wide landscape of position effects on heterogeneous gene expression in Saccharomyces cerevisiae. Biotechnol Biofuels 10:189. https://doi.org/10.1186/s13068-017-0872-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xie W, Liu M, Lv X, Lu W, Gu J, Yu H (2014) Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnol Bioeng 111:125–133

    Article  CAS  Google Scholar 

  35. Xie W, Lv X, Ye L, Zhou P, Yu H (2015) Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng 30:69–78. https://doi.org/10.1016/j.ymben.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  36. Xie W, Ye L, Lv X, Xu H, Yu H (2015) Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab Eng 28:8–18. https://doi.org/10.1016/j.ymben.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  37. Xiong L, Zeng Y, Tang RQ, Alper HS, Bai FW, Zhao XQ (2018) Condition-specific promoter activities in Saccharomyces cerevisiae. Microb Cell Fact 17:58. https://doi.org/10.1186/s12934-018-0899-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu T, Dabirian Y, Liu Q, Siewers V, Nielsen J (2019) Strategies and challenges for metabolic rewiring. Curr Opin Syste Biol 15:30–38. https://doi.org/10.1016/j.coisb.2019.03.004

    Article  Google Scholar 

  39. Yuan J, Ching CB (2015) Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae. Microb Cell Fact 14:38. https://doi.org/10.1186/s12934-015-0220-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou P, Xie W, Yao Z, Zhu Y, Ye L, Yu H (2018) Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch. Biotechnol Bioeng 115:1321–1330. https://doi.org/10.1002/bit.26544

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Guangdong Province Science and Technology Innovation Strategy Special Fund (Grant No. 2018B020206001), GDAS' Special Project of Science and Technology Development (Grant No. 2020GDASYL-20200302002), and the Science and Technology Plan Project of Guangdong Province (2016A010105013, 2019B030316017) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghui Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, B., Song, D., Yang, F. et al. Engineering a growth-phase-dependent biosynthetic pathway for carotenoid production in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 47, 383–393 (2020). https://doi.org/10.1007/s10295-020-02271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-020-02271-x

Keywords

Navigation