Skip to main content
Log in

Discovery of a new diol-containing polyketide by heterologous expression of a silent biosynthetic gene cluster from Streptomyces lavendulae FRI-5

  • Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The genome of streptomycetes has the ability to produce many novel and potentially useful bioactive compounds, but most of which are not produced under standard laboratory cultivation conditions and are referred to as silent/cryptic secondary metabolites. Streptomyces lavendulae FRI-5 produces several types of bioactive compounds. However, this strain may also have the potential to biosynthesize more useful secondary metabolites. Here, we activated a silent biosynthetic gene cluster of an uncharacterized compound from S. lavendulae FRI-5 using heterologous expression. The engineered strain carrying the silent gene cluster produced compound 5, which was undetectable in the culture broth of S. lavendulae FRI-5. Using various spectroscopic analyses, we elucidated the chemical structure of compound 5 (named lavendiol) as a new diol-containing polyketide. The proposed assembly line of lavendiol shows a unique biosynthetic mechanism for polyketide compounds. The results of this study suggest the possibility of discovering more silent useful compounds from streptomycetes by genome mining and heterologous expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bachmann BO, Van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41:175–184. https://doi.org/10.1007/s10295-013-1389-9

    Article  CAS  PubMed  Google Scholar 

  2. Baltz RH (2016) Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-016-1815-x

    Google Scholar 

  3. Bentley S, Chater K, Cerdeño-Tárraga A-M et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147. https://doi.org/10.1038/417141a

    Article  PubMed  Google Scholar 

  4. Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are headin. J Antibiot (Tokyo) 65:441. https://doi.org/10.1038/ja.2012.54

    Article  Google Scholar 

  5. Blin K, Medema MH, Kazempour D, Fischbach M, Breitling R, Takano E, Weber T (2013) antiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers. Nucl Acids Res 41:204–212. https://doi.org/10.1093/nar/gkt449

    Article  Google Scholar 

  6. Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627. https://doi.org/10.1002/1439-7633(20020703)3:7<619:AID-CBIC619>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  7. Cane DE, He X, Kobayashi S, Omura S, Ikeda H (2006) Geosmin biosynthesis in Streptomyces avermitilis. Molecular cloning, expression, and mechanistic study of the germacradienol/geosmin synthase. J Antibiot (Tokyo) 59:471–479. https://doi.org/10.1038/ja.2006.66

    Article  CAS  Google Scholar 

  8. Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555–1569. https://doi.org/10.1099/mic.0.2008/018523-0

    Article  CAS  PubMed  Google Scholar 

  9. Cheng Y-Q, Tang G-L, Shen B (2003) Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc Natl Acad Sci 100:3149–3154. https://doi.org/10.1073/pnas.0537286100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Du D, Katsuyama Y, Onaka H, Fujie M, Satoh N, Shin-ya K, Ohnishi Y (2016) Production of a novel amide-containing polyene by activating a cryptic biosynthetic gene cluster in Streptomyces sp. MSC090213JE08. ChemBioChem. https://doi.org/10.1002/cbic.201600167

    PubMed Central  Google Scholar 

  11. Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic machinery, and mechanisms. Chem Rev 106:3468–3496. https://doi.org/10.1021/cr0503097

    Article  CAS  PubMed  Google Scholar 

  12. Gomez-Escribano JP, Song L, Fox DJ, Yeo V, Bibb MJ, Challis GL (2012) Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem Sci 3:2716. https://doi.org/10.1039/c2sc20410j

    Article  CAS  Google Scholar 

  13. Gottelt M, Kol S, Gomez-Escribano JP, Bibb M, Takano E (2010) Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology 156:2343–2353. https://doi.org/10.1099/mic.0.038281-0

    Article  CAS  PubMed  Google Scholar 

  14. Gu L, Geders TW, Wang B, Gerwick WH, Hakansson K, Smith JL, Sherman DH (2007) GNAT-Like strategy for polyketide chain initiation. Science 318:970–974. https://doi.org/10.1126/science.1148790

    Article  CAS  PubMed  Google Scholar 

  15. Hashimoto K, Nihira T, Sakuda S, Yamada Y (1992) IM-2, a butyrolactone autoregulator, induces production of several nucleoside antibiotics in Streptomyces sp. FRI-5. J Ferment Bioeng 73:449–455. https://doi.org/10.1016/0922-338X(92)90136-I

    Article  CAS  Google Scholar 

  16. He M, Varoglu M, Sherman DH (2000) Structural modeling and site-directed mutagenesis of the actinorhodin beta-ketoacyl-acyl carrier protein synthase. J Bacteriol 182:2619–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Helfrich EJN, Piel J (2016) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 33:231–316. https://doi.org/10.1039/b816430b

    Article  CAS  PubMed  Google Scholar 

  18. Huang W, Kim SJ, Liu J, Zhang W (2015) Identification of the polyketide biosynthetic machinery for the indolizidine alkaloid cyclizidine. Org Lett 17:5344–5347. https://doi.org/10.1021/acs.orglett.5b02707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ikeda H, Nonomiya T, Usami M, Ohta T, Omura S (1999) Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci USA 96:9509–9514. https://doi.org/10.1073/pnas.96.17.9509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ikeda H, Shin-Ya K, Omura S (2014) Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. J Ind Microbiol Biotechnol 41:233–250. https://doi.org/10.1007/s10295-013-1327-x

    Article  CAS  PubMed  Google Scholar 

  21. Keatinge-Clay AT (2007) A tylosin ketoreductase reveals how chirality is determined in polyketides. Chem Biol 14:898–908. https://doi.org/10.1016/j.chembiol.2007.07.009

    Article  CAS  PubMed  Google Scholar 

  22. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  23. Kitani S, Ikeda H, Sakamoto T, Nogochi S, Takuya N (2009) Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis. Appl Microbiol Biotechnol 82:1089–1096. https://doi.org/10.1007/s00253-008-1850-2

    Article  CAS  PubMed  Google Scholar 

  24. Kitani S, Yamada Y, Nihira T (2001) Gene replacement analysis of the butyrolactone autoregulator receptor (FarA) reveals that FarA acts as a novel regulator in secondary metabolism of Streptomyces lavendulae FRI-5. J Bacteriol 183:4357–4363. https://doi.org/10.1128/JB.183.14.4357-4363.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220. https://doi.org/10.1038/nrd1657

    Article  CAS  PubMed  Google Scholar 

  26. Komatsu M, Komatsu K, Koiwai H et al (2013) Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol 2:384–396. https://doi.org/10.1021/sb3001003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Komatsu M, Tsuda M, Omura S, Oikawa H, Ikeda H (2008) Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proc Natl Acad Sci USA 105:7422–7427. https://doi.org/10.1073/pnas.0802312105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA 107:2646–2651. https://doi.org/10.1073/pnas.0914833107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laureti L, Song L, Huang S, Corre C, Leblond P, Challis GL, Aigle B (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci USA 108:6258–6263. https://doi.org/10.1073/pnas.1019077108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mizutani S, Odai H, Masuda T et al (1989) Biological activities of IC201 ((3S,8E)-1,3-dihydroxy-8-decen-5-one), a low molecular weight immunomodulator produced by Streptomyces. J Antibiot (Tokyo) 42:952–959. https://doi.org/10.7164/antibiotics.42.952

    Article  CAS  Google Scholar 

  31. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661. https://doi.org/10.1021/acs.jnatprod.5b01055

    Article  CAS  PubMed  Google Scholar 

  32. Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97:87–98. https://doi.org/10.1007/s00253-012-4551-9

    Article  CAS  PubMed  Google Scholar 

  33. Ohnishi Y, Ishikawa J, Hara H et al (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060. https://doi.org/10.1128/JB.00204-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ohtsubo Y, Ikeda-Ohtsubo W, Nagata Y, Tsuda M (2008) GenomeMatcher: a graphical user interface for DNA sequence comparison. BMC Bioinf 9:376. https://doi.org/10.1186/1471-2105-9-376

    Article  Google Scholar 

  35. Omura S (2011) Microbial metabolites: 45 years of wandering, wondering and discovering. Tetrahedron 67:6420–6459. https://doi.org/10.1016/j.tet.2011.03.117

    Article  CAS  Google Scholar 

  36. Onaka H, Ozaki T, Mori Y, Izawa M, Hayashi S, Asamizu S (2015) Mycolic acid-containing bacteria activate heterologous secondary metabolite expression in Streptomyces lividans. J Antibiot (Tokyo) 68:1–4. https://doi.org/10.1038/ja.2015.31

    Article  Google Scholar 

  37. Pait IGU, Kitani S, Kurniawan YN, Asa M, Iwai T, Ikeda H, Nihira T (2017) Identification and characterization of lbpA, an indigoidine biosynthetic gene in the γ-butyrolactone signaling system of Streptomyces lavendulae FRI-5. J Biosci Bioeng. https://doi.org/10.1016/j.jbiosc.2017.04.020

    PubMed  Google Scholar 

  38. Reen FJ, Romano S, Dobson ADW, O’Gara F (2015) The sound of silence: activating silent biosynthetic gene clusters in marine microorganisms. Mar Drugs 13:4754–4783. https://doi.org/10.3390/md13084754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reid R, Piagentini M, Rodriguez E et al (2003) A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. Biochemistry 42:72–79. https://doi.org/10.1021/bi0268706

    Article  CAS  PubMed  Google Scholar 

  40. Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753. https://doi.org/10.1039/b821578b

    Article  CAS  PubMed  Google Scholar 

  41. Skiba MA, Sikkema AP, Fiers WD, Gerwick WH, Sherman DH, Aldrich CC, Smith JL (2016) Domain organization and active site architecture of a polyketide synthase C -methyltransferase. ACS Chem Biol 11:3319–3327. https://doi.org/10.1021/acschembio.6b00759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416. https://doi.org/10.1039/a909079g

    Article  CAS  PubMed  Google Scholar 

  43. Strobel T, Al-Dilaimi A, Blom J et al (2012) Complete genome sequence of Saccharothrix espanaensis DSM 44229T and comparison to the other completely sequenced Pseudonocardiaceae. BMC Genom 13:465. https://doi.org/10.1186/1471-2164-13-465

    Article  CAS  Google Scholar 

  44. Tanaka Y, Kasahara K, Hirose Y, Murakami K, Kugyama R, Ochi K (2013) Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J Bacteriol 195:2959–2970. https://doi.org/10.1128/JB.00147-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tanaka Y, Tokuyama S, Ochi K (2009) Activation of secondary metabolite-biosynthetic gene clusters by generating rsmG mutations in Streptomyces griseus. J Antibiot (Tokyo) 62:669–673. https://doi.org/10.1038/ja.2009.97

    Article  CAS  Google Scholar 

  46. Tarazona G, Schleissner C, Rodríguez P, Pérez M, Cañedo LM, Cuevas C (2017) Streptenols F–I isolated from the marine-derived Streptomyces misionensis BAT-10-03-023. J Nat Prod. https://doi.org/10.1021/acs.jnatprod.6b01057

  47. Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R (2013) Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio. https://doi.org/10.1128/mBio.00459-13

    PubMed  PubMed Central  Google Scholar 

  48. Wesener SR, Potharla VY, Cheng YQ (2011) Reconstitution of the FK228 biosynthetic pathway reveals cross talk between modular polyketide synthases and fatty acid synthase. Appl Environ Microbiol 77:1501–1507. https://doi.org/10.1128/AEM.01513-10

    Article  CAS  PubMed  Google Scholar 

  49. Wu J, Zaleski TJ, Valenzano C, Khosla C, Cane DE (2005) Polyketide double bond biosynthesis. Mechanistic analysis of the dehydratase-containing module 2 of the picromycin/methymycin polyketide synthase. J Am Chem Soc 127:17393–17404. https://doi.org/10.1021/ja055672+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamada Y, Arima S, Nagamitsu T et al (2015) Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host. J Antibiot (Tokyo) 68:1–10. https://doi.org/10.1038/ja.2014.171

    Article  Google Scholar 

  51. Yamada Y, Kuzuyama T, Komatsu M, Shin-ya K, Omura S, Cane DE, Ikeda H (2015) Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci 112:857–862. https://doi.org/10.1073/pnas.1422108112

    Article  CAS  PubMed  Google Scholar 

  52. Yanai K, Murakami T, Bibb M (2006) Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proc Natl Acad Sci USA 103:9661–9666. https://doi.org/10.1073/pnas.0603251103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ye S, Molloy B, Braña AF et al (2017) Identification by genome mining of a type I polyketide gene cluster from Streptomyces argillaceus involved in the biosynthesis of pyridine and piperidine alkaloids argimycins P. Front Microbiol 8:1–18. https://doi.org/10.3389/fmicb.2017.00194

    Google Scholar 

  54. Yu D, Xu F, Zhang S et al (2013) Characterization of a methyltransferase involved in herboxidiene biosynthesis. Bioorganic Med Chem Lett 23:5667–5670. https://doi.org/10.1016/j.bmcl.2013.08.023

    Article  CAS  Google Scholar 

  55. Zarins-Tutt JS, Barberi TT, Gao H et al (2016) Prospecting for new bacterial metabolites: a glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products. Nat Prod Rep 33:54–72. https://doi.org/10.1039/C5NP00111K

    Article  CAS  PubMed  Google Scholar 

  56. Zhang W, Li S, Zhu Y et al (2014) Heronamides D-F, polyketide macrolactams from the deep-sea-derived Streptomyces sp. SCSIO 03032. J Nat Prod 77:388–391. https://doi.org/10.1021/np400665a

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (Grant Number JP15K07358) from the Japan Society for the Promotion of Science (JSPS) to S.K., by the New Chemical Technology Research Encouragement Award from the Japan Association for Chemical Innovation to S.K., and by a scholarship from the Ministry of Education, Culture, Sports, Science, and Technology of Japan to I.G.U.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Nihira.

Additional information

This research was conducted by I.G.U.P. in partial fulfillment of the requirements for a Ph.D.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 896 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pait, I.G.U., Kitani, S., Roslan, F.W. et al. Discovery of a new diol-containing polyketide by heterologous expression of a silent biosynthetic gene cluster from Streptomyces lavendulae FRI-5. J Ind Microbiol Biotechnol 45, 77–87 (2018). https://doi.org/10.1007/s10295-017-1997-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-017-1997-x

Keywords

Navigation