Skip to main content
Log in

Site-saturation mutagenesis of mutant l-asparaginase II signal peptide hydrophobic region for improved excretion of cyclodextrin glucanotransferase

  • Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The excretion of cyclodextrin glucanotransferase (CGTase) into the culture medium offers significant advantages over cytoplasmic expression. However, the limitation of Escherichia coli is its inability to excrete high amount of CGTase outside the cells. In this study, modification of the hydrophobic region of the N1R3 signal peptide using site-saturation mutagenesis improved the excretion of CGTase. Signal peptide mutants designated M9F, V10L and A15Y enhanced the excretion of CGTase three-fold and demonstrated two-fold higher secretion rate than the wild type. However, high secretion rate of these mutants was non-productive for recombinant protein production because it caused up to a seven-fold increase in cell death compared to the wild type. Our results indicated that the excretion of CGTase is highly dependent on hydrophobicity, secondary conformation and the type and position of amino acids at the region boundary and core segment of the h-region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bakke I, Berg L, Aune TEV, Brautaset T, Sletta H, Tøndervik A, Valla S (2009) Random mutagenesis of the Pm promoter as a powerful strategy for improvement of recombinant-gene expression. Appl Environ Microbiol 75:2002–2011. doi:10.1128/AEM.02315-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408. doi:10.1038/nbt1029

    Article  CAS  PubMed  Google Scholar 

  3. Bao RM, Yang HM, Yu CM, Zhang WF, Tang JB (2016) An efficient protocol to enhance the extracellular production of recombinant protein from Escherichia coli by the synergistic effects of sucrose, glycine, and Triton X-100. Protein Exp Purif 126:9–15. doi:10.1016/j.pep.2016.05.007

    Article  CAS  Google Scholar 

  4. Bowers C, Lau F (2003) Secretion of LamB-LacZ by the signal recognition particle pathway of Escherichia coli. J Bacteriol 185:5697–5705. doi:10.1128/JB.185.19.5697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T, Eggert T (2006) Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. J Mol Biol 362:393–402. doi:10.1016/j.jmb.2006.07.034

    Article  CAS  PubMed  Google Scholar 

  6. Chatzi KE, Sardis MF, Karamanou S, Economou A (2013) Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 449:25–37. doi:10.1042/BJ20121227

    Article  CAS  PubMed  Google Scholar 

  7. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64:625–635. doi:10.1007/s00253-004-1559-9

    Article  CAS  PubMed  Google Scholar 

  8. Chou YT, Gierasch LM (2005) The conformation of a signal peptide bound by Escherichia coli preprotein translocase SecA. J Biol Chem 280:32753–32760. doi:10.1074/jbc.M507532200

    Article  CAS  PubMed  Google Scholar 

  9. Chou MM, Kendall DA (1990) Polymeric sequences reveal a functional interrelationship between hydrophobicity and length of signal peptides. J Biol Chem 265:2873–2880

    CAS  PubMed  Google Scholar 

  10. Chupin V, Killian JA, Breg J, de Jongh HH, Boelens R, Kaptein R, de Kruijff B (1995) PhoE signal peptide inserts into micelles as a dynamic helix-break-helix structure, which is modulated by the environment. A two-dimensional 1H NMR study. Biochemistry 34:11617–11624

    Article  CAS  PubMed  Google Scholar 

  11. Clérico EM, Maki JL, Gierasch LM (2008) Use of synthetic signal sequences to explore the protein export machinery. Biopolym Pept Sci 90:307–319. doi:10.1002/bip.20856

    Article  Google Scholar 

  12. Dalbey RE, Wang P, van Dijl JM (2012) Membrane Proteases in the bacterial protein secretion and quality control pathway. Microbiol Mol Biol Rev 76:311–330. doi:10.1128/MMBR.05019-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Bona P, Deshmukh L, Gorbatyuk V, Vinogradova O, Kendall DA (2012) Structural studies of a signal peptide in complex with signal peptidase I cytoplasmic domain: the stabilizing effect of membrane-mimetics on the acquired fold. Proteins Struct Funct Bioinform 80:807–817. doi:10.1002/prot.23238

    Article  Google Scholar 

  14. Doud SK, Chou MM, Kendall DA (1993) Titration of protein transport activity by incremental changes in signal peptide hydrophobicity. Biochemistry 32:1251–1256

    Article  CAS  PubMed  Google Scholar 

  15. Douzi B, Filloux A, Voulhoux R (2012) On the path to uncover the bacterial type II secretion system. Philos Trans R Soc B 367:1059–1072. doi:10.1098/rstb.2011.0204

    Article  CAS  Google Scholar 

  16. Emr SD, Silhavy TJ (1982) Molecular components of the signal sequence that function in the initiation of protein export. J Cell Biol 95:689–696

    Article  CAS  PubMed  Google Scholar 

  17. Fekkes P, Driessen AJ (1999) Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev 63:161–173

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Filipe JM, Monteiro GA (2004) Secretion capacity limitations of the Sec pathway in Escherichia coli. J Microbiol Biotechnol 14:128–133

    Google Scholar 

  19. Fu ZB, Ng KL, Lam TL, Wong WKR (2005) Cell death caused by hyper-expression of a secretory exoglucanase in Escherichia coli. Protein Exp Purif 42:67–77. doi:10.1016/j.pep.2005.03.029

    Article  CAS  Google Scholar 

  20. Fu ZB, Ng KL, Lam CC, Leung KC, Yip WH, Wong WKR (2006) A two-stage refinement approach for the enhancement of excretory production of an exoglucanase from Escherichia coli. Protein Exp Purif 48:205–214. doi:10.1016/j.pep.2006.01.013

    Article  CAS  Google Scholar 

  21. Gennity J, Goldstein J, Inouye M (1990) Signal peptide mutants of Escherichia coli. J Bioenerg Biomembr 22:233–269

    Article  CAS  PubMed  Google Scholar 

  22. Heggeset TMB, Kucharova V, Naerdal I, Valla S, Sletta H, Ellingsen TE, Brautaset T (2013) Combinatorial mutagenesis and selection of improved signal sequences and their application for high-level production of translocated heterologous proteins in Escherichia coli. Appl Environ Microbiol 79:559–568. doi:10.1128/AEM.02407-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hikita C, Mizushima S (1992) Effects of total hydrophobicity and length of the hydrophobic domain of a signal peptide on in vitro translocation efficiency. J Biol Chem 267:4882–4888

    CAS  PubMed  Google Scholar 

  24. Ismail NF, Hamdan S, Mahadi NM, Murad AMA, Rabu A, Bakar FDA, Klappa P, Illias RM (2011) A mutant l-asparaginase II signal peptide improves the secretion of recombinant cyclodextrin glucanotransferase and the viability of Escherichia coli. Biotechnol Lett 33:999–1005. doi:10.1007/s10529-011-0517-8

    Article  CAS  PubMed  Google Scholar 

  25. Izard JW, Rusch SL, Kendall DA (1996) The amino-terminal charge and core region hydrophobicity interdependently contribute to the function of signal sequences. J Biol Chem 271:21579–21582. doi:10.1074/jbc.271.35.21579

    Article  CAS  PubMed  Google Scholar 

  26. Jones JD, McKnight CJ, Gierasch LM (1990) Biophysical studies of signal peptides: implications for signal sequence functions and the involvement of lipid in protein export. J Bioenerg Biomembr 22:213–232. doi:10.1007/BF00763166

    Article  CAS  PubMed  Google Scholar 

  27. Jonet MA, Mahadi NM, Murad AMA, Rabu A, Bakar FDA, Rahim RA, Low KO, Illias RM (2012) Optimization of a heterologous signal peptide by site-directed mutagenesis for improved secretion of recombinant proteins in Escherichia coli. J Mol Microbiol Biotechnol 22:48–58. doi:10.1159/000336524

    Article  CAS  PubMed  Google Scholar 

  28. Jong WS, Saurí A, Luirink J (2010) Extracellular production of recombinant proteins using bacterial autotransporters. Curr Opin Biotechnol 21:646–652. doi:10.1016/j.copbio.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  29. Kadonaga JT, Gautier AE, Straus DR, Charles AD, Edge MD, Knowles JR (1984) The role of the β-Lactamase signal sequence in the secretion of proteins by Escherichia coli *. J Biol Chem 259:2149–2154

    CAS  PubMed  Google Scholar 

  30. Kendall DA, Bock SC, Kaiser ET (1986) Idealization of the hydrophobic segment of the alkaline phosphatase signal peptide. Nature 321:706–708. doi:10.1038/321706a0

    Article  CAS  PubMed  Google Scholar 

  31. Kim SG, Kweon DH, Lee DH, Park YC, Seo JH (2005) Coexpression of folding accessory proteins for production of active cyclodextrin glycosyltransferase of Bacillus macerans in recombinant Escherichia coli. Protein Expr Purif 41:426–432. doi:10.1016/j.pep.2005.01.017

    Article  CAS  PubMed  Google Scholar 

  32. Kim AC, Oliver DC, Paetzel M (2008) Crystal structure of a bacterial signal peptide peptidase. J Mol Biol 376:352–366. doi:10.1016/j.jmb.2007.11.080

    Article  CAS  PubMed  Google Scholar 

  33. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132. doi:10.1016/0022-2836(82)90515-0

    Article  CAS  PubMed  Google Scholar 

  34. Labrou N (2010) Random mutagenesis methods for in vitro directed enzyme evolution. Curr Protein Pept Sci 11:91–100. doi:10.2174/1389209198868622037

    Article  CAS  PubMed  Google Scholar 

  35. Lehnhardt S, Pollitt S, Inouye M (1987) The differential effect on two hybrid proteins of deletion mutations within the hydrophobic region of the Escherichia coli OmpA signal peptide. J Biol Chem 262:1716–1719

    CAS  PubMed  Google Scholar 

  36. Lemberg MK, Martoglio B (2002) Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol Cell 10:735–744. doi:10.1016/S1097-2765(02)00655-X

    Article  CAS  PubMed  Google Scholar 

  37. Li H, Faury D, Morosoli R (2006) Impact of amino acid changes in the signal peptide on the secretion of the Tat-dependent xylanase C from Streptomyces lividans. FEMS Microbiol Lett 255:268–274. doi:10.1111/j.1574-6968.2005.00081.x

    Article  CAS  PubMed  Google Scholar 

  38. Li ZF, Li B, Liu ZG, Wang M, Gu ZB, Du GC, Wu J, Chen J (2009) Calcium leads to further increase in glycine-enhanced extracellular secretion of recombinant alpha-cyclodextrin glycosyltransferase in Escherichia coli. J Agric Food Chem 57:6231–6237. doi:10.1021/jf901239k

    Article  CAS  PubMed  Google Scholar 

  39. Li Z, Gu Z, Wang M, Du G, Wu J, Chen J (2010) Delayed supplementation of glycine enhances extracellular secretion of the recombinant alpha-cyclodextrin glycosyltransferase in Escherichia coli. Appl Microbiol Biotechnol 85:553–561. doi:10.1007/s00253-009-2157-7

    Article  CAS  PubMed  Google Scholar 

  40. Li Z, Su L, Wang L, Liu Z, Gu Z, Chen J, Wu J (2014) Novel insight into the secretory expression of recombinant enzymes in Escherichia coli. Process Biochem 49:599–603. doi:10.1016/j.procbio.2014.01.029

    Article  Google Scholar 

  41. Li L, Park E, Ling J, Ingram J, Ploegh H, Rapoport TA (2016) Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 531:395–399. doi:10.1038/nature17163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Low KO, Mahadi NM, Illias RM (2013) Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl Microbiol Biotechnol 97:3811–3826. doi:10.1007/s00253-013-4831-z

    Article  CAS  PubMed  Google Scholar 

  43. Mergulhão FJM, Summers DK, Monteiro GA (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23:177–202. doi:10.1016/j.biotechadv.2004.11.003

    Article  PubMed  Google Scholar 

  44. Mori H, Araki M, Hikita C, Tagaya M, Mizushima S (1997) The hydrophobic region of signal peptides is involved in the interaction with membrane-bound SecA. Biochim Biophys Acta 1326:23–36. doi:10.1016/S0005-2736(97)00004-7

    Article  CAS  PubMed  Google Scholar 

  45. Ni Y, Chen R (2009) Extracellular recombinant protein production from Escherichia coli. Biotechnol Lett 31:1661–1670. doi:10.1007/s10529-009-0077-3

    Article  CAS  PubMed  Google Scholar 

  46. Nielsen H, Engelbrecht J (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites artificial neural networks have been used for many biological. Protein Eng 10:1–6. doi:10.1142/S0129065797000537

    Article  CAS  PubMed  Google Scholar 

  47. Park S, Liu G, Topping TB, Cover WH, Randall LL (1988) Modulation of folding pathways of exported proteins by the leader sequence. Science 239:1033–1035. doi:10.1126/science.3278378

    Article  CAS  PubMed  Google Scholar 

  48. Patrick WM, Firth AE (2005) Strategies and computational tools for improving randomized protein libraries. Biomol Eng 22:105–112. doi:10.1016/j.bioeng.2005.06.001

    Article  CAS  PubMed  Google Scholar 

  49. Pugsley AP (1993) The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev 57:50–108

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rusch SL, Kendall DA (1992) Signal sequences containing multiple aromatic residues. J Mol Biol 224:77–85. doi:10.1016/0022-2836(92)90577-7

    Article  CAS  PubMed  Google Scholar 

  51. Rusch SL, Kendall DA (2007) Interactions that drive Sec-dependent bacterial protein transport. Biochemistry 46:9665–9673. doi:10.1021/bi7010064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rusch SL, Chen H, Izard JW, Kendall DA (1994) Signal peptide hydrophobicity is finely tailored for function. J Cell Biochem 55:209–217. doi:10.1002/jcb.240550208

    Article  CAS  PubMed  Google Scholar 

  53. Rusch SL, Mascolo CL, Kebir MO, Kendall DA (2002) Juxtaposition of signal-peptide charge and core region hydrophobicity is critical for functional signal peptides. Arch Microbiol 178:306–310. doi:10.1007/s00203-002-0453-z

    Article  CAS  PubMed  Google Scholar 

  54. Ryan P, Edwards CO (1995) Systematic introduction of proline in a eukaryotic signal sequence suggests asymmetry within the hydrophobic core. J Biol Chem 270:27876–27879. doi:10.1074/jbc.270.46.27876

    Article  CAS  PubMed  Google Scholar 

  55. Shin H-D, Chen RR (2008) Extracellular recombinant protein production from an Escherichia coli lpp deletion mutant. Biotechnol Bioeng 101:1288–1296. doi:10.1002/bit.22013

    Article  CAS  PubMed  Google Scholar 

  56. Shokri A, Sandén AM, Larsson G (2003) Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl Microbiol Biotechnol 60:654–664. doi:10.1007/s00253-002-1156-8

    Article  CAS  PubMed  Google Scholar 

  57. Sjöström M, Wold S, Wieslander A, Rilfors L (1987) Signal peptide amino acid sequences in Escherichia coli contain information related to final protein localization. A multivariate data analysis. EMBO J 6:823–831

    PubMed  Google Scholar 

  58. Stader J, Benson SA, Silhavy TJ (1986) Kinetic analysis of lamB mutants suggests the signal sequence plays multiple roles in protein export. J Biol Chem 261:15075–15080

    CAS  PubMed  Google Scholar 

  59. Stern B, Optun A, Liesenfeld M, Gey C, Gräfe M, Pryme IF (2011) Enhanced protein synthesis and secretion using a rational signal-peptide library approach as a tailored tool. BMC Proc 5(Suppl 8):O13. doi:10.1186/1753-6561-5-S8-O13

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sung CY, Gennity JM, Pollitts NS (1992) A positive residue in the hydrophobic core of the Escherichia coli lipoprotein signal peptide suppresses the secretion defect caused by an acidic amino terminus. J Biol Chem 267:997–1000

    CAS  PubMed  Google Scholar 

  61. von Heijne G (1985) Signal sequences. The limits of variation. J Mol Biol 184:99–105. doi:10.1016/0022-2836(85)90046-4

    Article  Google Scholar 

  62. von Heijne G (1990) The signal peptide. J Membr Biol 115:195–201. doi:10.1007/BF01871271

    Article  Google Scholar 

  63. Wang L, Miller A, Kendall DA (2000) Signal peptide determinants of SecA binding and stimulation of ATPase activity. J Biol Chem 275:10154–10159. doi:10.1074/jbc.275.14.10154

    Article  CAS  PubMed  Google Scholar 

  64. Wang L, Miller A, Rusch SL, Kendall DA (2004) Demonstration of a specific Escherichia coli SecY-signal peptide interaction. Biochemistry 43:13185–13192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang YY, Fu ZB, Ng KL, Lam CC, Chan AKN, Sze KF, Wong WKR (2011) Enhancement of excretory production of an exoglucanase from Escherichia coli with Phage shock protein A (PspA) overexpression. J Microbiol Biotechnol 21:637–645. doi:10.4014/jmb.1101.01036

    Article  CAS  PubMed  Google Scholar 

  66. Yoon SH, Kim SK, Kim JF (2010) Secretory production of recombinant proteins in Escherichia coli. Recent Pat Biotechnol 4:23–29

    Article  CAS  PubMed  Google Scholar 

  67. Zalucki YM, Beacham IR, Jennings MP (2011) Coupling between codon usage, translation and protein export in Escherichia coli. Biotechnol J 6:660–667. doi:10.1002/biot.201000334

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Universiti Teknologi Malaysia (UTM) under the project “Enhance Extracellular Production of Recombinant Cyclodextrin Glucanotransferase (CGTase) by Random Mutagenesis of Signal Peptide and Optimization of Medium Additives” (Grant No.: Q.J130000.7135.00H76).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosli Md. Illias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, A., Illias, R.M. Site-saturation mutagenesis of mutant l-asparaginase II signal peptide hydrophobic region for improved excretion of cyclodextrin glucanotransferase. J Ind Microbiol Biotechnol 44, 1627–1641 (2017). https://doi.org/10.1007/s10295-017-1980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-017-1980-6

Keywords

Navigation