Skip to main content
Log in

Signal peptide mutants ofEscherichia coli

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Numerous secretory proteins of the Gram-negative bacteriaE. coli are synthesized as precursor proteins which require an amino terminal extension known as the signal peptide for translocation across the cytoplasmic membrane. Following translocation, the signal peptide is proteolytically cleaved from the precursor to produce the mature exported protein. Signal peptides do not exhibit sequence homology, but invariably share common structural features: (1) The basic amino acid residues positioned at the amino terminus of the signal peptide are probably involved in precursor protein binding to the cytoplasmic membrane surface. (2) A stretch of 10 to 15 nonpolar amino acid residues form a hydrophobic core in the signal peptide which can insert into the lipid bilayer. (3) Small residues capable of β-turn formation are located at the cleavage site in the carboxyl terminus of the signal peptide. (4) Charge characteristics of the amino terminal region of the mature protein can also influence precursor protein export. A variety of mutations in each of the structurally distinct regions of the signal peptide have been constructedvia site-directed mutagenesis or isolated through genetic selection. These mutants have shed considerable light on the structure and function of the signal peptide and are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bankaitis, V. A., Rasmussen, B. A., and Bassford, P. J. (1984).Cell 37, 243–252.

    Google Scholar 

  • Bankaitis, V. A., Altman, E., and Emr, S. D. (1987). InBacterial Outer Membranes as Model Systems (Inouye, M., ed.), Wiley, New York, pp. 75–116.

    Google Scholar 

  • Batenburg, A. M., Brasseur, R., Ruysschaert, J., van Scharrenburg, G. J. M., Slotboom, A. J., Demel, R. A., and de Kruijff, B. (1988).J. Biol. Chem. 263, 4202–4207.

    Google Scholar 

  • Bechwith, J., and Silhavy, T. (1984). InMethods in Enzymology (Fleischer, S., and Fleischer, B., eds.), Academic Press, New York, pp. 3–11.

    Google Scholar 

  • Bedouelle, H., and Hofnay, M. (1981). InMembrane Transport and Neuroreceptors (Oxender, D.,et al., eds.), A. R. Liss, New York, pp. 399–403.

    Google Scholar 

  • Bedouelle, H., Bassford, P. J., Fowler, A. V., Zabin, I., Beckwith, J., and Hofnung, M. (1980).Nature (London)285, 78–81.

    Google Scholar 

  • Benson, S. A., Hall, M. N. and Rasmussen, B. A. (1987).J. Bacteriol. 169, 4686–4691.

    Google Scholar 

  • Blobel, G., and Dobberstein, B. (1975).J. Cell. Biol. 67, 835–851.

    Google Scholar 

  • Briggs, M. S., and Gierasch, L. M. (1986).Adv. Protein Chem. 38, 109–180.

    Google Scholar 

  • Briggs, M. S., Gierasch, L. M., Zlotnick, A., Lear, J. D., and DeGrado, W. F. (1985).Science 228, 1096–1099.

    Google Scholar 

  • Caulfield, M. R., Duong, L. T., Baker, R. K., Rosenblatt, M., and Lively, M. O. (1989).J. Biol. Chem. 264, 15813–15817.

    Google Scholar 

  • Cavard, D., Baty, D., Howard, S. P., Verheij, H. M., and Lazdunski, C. (1987).J. Bacteriol. 169, 2187–2194.

    Google Scholar 

  • Chen, L., Tai, P. C., Briggs, M. S., and Gierasch, L. M. (1987).J. Biol. Chem. 262, 1427–1429.

    Google Scholar 

  • Chou, P. Y., and Fasman, G. D. (1978).Annu. Rev. Biochem. 47, 251–276.

    Google Scholar 

  • Coleman, J., Inukai, M., and Inouye, M. (1985).Cell. 43, 351–360.

    Google Scholar 

  • Collier, D. N., and Bassford, P. J. (1989).J. Bacteriol. 171, 4640–4647.

    Google Scholar 

  • Cover, W. H., Ryan, J. P., Bassford, P. J., Walsh, K. A., Bollingen, J., and Randall, L. L. (1987).J. Bacteriol. 169, 1794–1800.

    Google Scholar 

  • DeVrije, T., Batenburg, A. M., Jordi, W., and DeKruijff, B. (1989).Eur. J. Biochem. 180, 385–292.

    Google Scholar 

  • Duffaud, G., and Inouye, M. (1988).J. Biol. Chem. 263, 10224–10228.

    Google Scholar 

  • Emr, S. D., and Bassford, P. J. (1982).J. Biol. Chem. 257, 5852–5860.

    Google Scholar 

  • Emr, S. D., and Silhavy, T. J. (1980).J. Mol. Biol. 141, 63–90.

    Google Scholar 

  • Emr, S. D., and Silhavy, T. J. (1983).Proc. Natl. Acad. Sci. USA 80, 4599–4603.

    Google Scholar 

  • Emr, S. D., Schwartz, M., and Silhavy, T. J. (1978).Proc. Natl. Acad. Sci. USA 75, 5802–5806.

    Google Scholar 

  • Fikes, J. D., and Bassford, P. J. (1987).J. Bacteriol. 169, 2352–2359.

    Google Scholar 

  • Fikes, J. D., Bankaitis, V. A., Ryan, J. P., and Bassford, P. J. (1987).J. Bacteriol. 169, 2345–2359.

    Google Scholar 

  • Freudl, R., Braun, G., Hindennach, I., and Henning, U. (1985).Mol. Gen. Genet. 201, 76–81.

    Google Scholar 

  • Freudl, R., MacIntyre, S., Degen, M., and Henning, U. (1988).J. Biol. Chem. 263, 344–349.

    Google Scholar 

  • Garcia, PO. D., Ghrayeb, J., Inouye, M., and Walter, P. (1987).J. Biol. Chem. 262, 9463–9468.

    Google Scholar 

  • Goldstein, J., Lehnhardt, S., and Inouye, M. (1990).J. Bacteriol. 172, 1225–1231.

    Google Scholar 

  • Ghrayeb, J., Lunn, C. A., Inouye, S., and Inouye, M. (1985).J. Biol. Chem. 260, 10961–10965.

    Google Scholar 

  • Hall, M. N., Gabay, J., and Schwartz, M. (1983).EMBO J. 2, 15–19.

    Google Scholar 

  • Hartmann, E., Rapaport, T. A., and Lodish, H. F. (1989).Proc. Natl. Acad. Sci. USA 86, 5786–5790.

    Google Scholar 

  • Iida, A., Groarke, J. M., Park, S., Thom, J., Zabicky, J. H., Hazelbauer, G. L., and Randall, L. L. (1985).EMBO J. 4, 1875–1880.

    Google Scholar 

  • Iino, T., Takahashi, M., and Sako, T. (1987).J. Biol. Chem. 262, 7412–7417.

    Google Scholar 

  • Inouye, M., and Halegoua, S. (1980).CRC Crit. Rev. Biochem. 7, 339–371.

    Google Scholar 

  • Inouye, S., Wang, S., Sekizawa, J., Halegoua, S., and Inouye, M. (1977).Proc. Natl. Acad. Sci. USA 74, 1004–1008.

    Google Scholar 

  • Inouye, S., Soberon, X., Franceschini, T., Nakamura, K., Itakura, K., and Inouye, M. (1982).Proc. Natl. Acad. Sci. USA 79, 3438–3441.

    Google Scholar 

  • Inouye, S., Franceschini, T., Sato, M., Itakura, K., and Inouye, M. (1983a).EMBO J. 2, 87–91.

    Google Scholar 

  • Inouye, S., Hsu, C-P. S., Itakura, K., and Inouye, M. (1983b).Science 221, 59–61.

    Google Scholar 

  • Inouye, S., Vlasuk, G. P., Hsiung, H., and Inouye, M. (1984).J. Biol. Chem. 259, 3729–3733.

    Google Scholar 

  • Inouye, S., Duffaud, G., and Inouye, M. (1986).J. Biol. Chem. 261, 10970–10975.

    Google Scholar 

  • Kadonaga, J. T., Plueckthun, A., and Knowles, J. R. (1985).J. Biol. Chem. 260, 16192–16199.

    Google Scholar 

  • Kendall, D. A., Bock, S. C., and Kaiser, E. T. (1986).Nature (London)321, 706–708.

    Google Scholar 

  • Kuhn, A., and Wickner, W. (1985).J. Biol. Chem. 260, 15914–15918.

    Google Scholar 

  • Lee, N., Yamagata, H., and Inouye, M. (1983).J. Bacteriol. 155, 407–411.

    Google Scholar 

  • Lenhardt, S., Pollitt, S. and Inouye, M. (1987).J. Biol. Chem. 262, 1716–1719.

    Google Scholar 

  • Lehnhardt, S., Pollitt, N. S., Goldstein, J., and Inouye, M. (1988).J. Biol. Chem. 263, 10300–10303.

    Google Scholar 

  • Li, P., Beckwith, J., and Inouye, H. (1988).Proc. Natl. Acad. Sci. USA 85, 7685–7689.

    Google Scholar 

  • Lin, J. J. C., Kanazuwa, H., Ozols, J., and Wu, H. (1978).Proc. Natl. Acad. Sci. USA 75, 4891–4895.

    Google Scholar 

  • Lunn, C. A., and Inouye, M. (1987).J. Biol. Chem. 262, 8318–8324.

    Google Scholar 

  • Michaelis, S., Inouye, H., Oliver, D., and Beckwith, J. (1983).J. Bacteriol. 154, 366–374.

    Google Scholar 

  • Michaelis, S., Hunt, J. F., and Beckwith, J. (1986).J. Bacteriol. 167, 160–167.

    Google Scholar 

  • Nikaido, H., and Wu, H. C. (1984).Proc. Natl. Acad. Sci. USA 81, 1048–1052.

    Google Scholar 

  • Perlman, D., and Halvorson, H. O. (1983).J. Mol. Biol. 167, 392–409.

    Google Scholar 

  • Pollitt, N. S., and Inouye, M. (1988).J. Bacteriol. 170, 2051–2055.

    Google Scholar 

  • Pollitt, S., Inouye, S., and Inouye, M. (1985).J. Biol. Chem. 260, 7965–7969.

    Google Scholar 

  • Pollitt, S., Inouye, S., and Inouye, M. (1986).J. Biol. Chem. 261, 1835–1837.

    Google Scholar 

  • Pugsley, A. P. (1988). InProtein Transfer and Organelle Biogenesis (Das, R. C., and Robbins, P. W., eds.), Academic Press, New York, pp. 607–652.

    Google Scholar 

  • Puziss, J. W., Fikes, J. D., and Bassford, P. J. (1989).J. Bacteriol. 171, 2303–2311.

    Google Scholar 

  • Rasmussen, B. A., and Silhavy, T. J. (1987).Genes Dev. 1, 185–196.

    Google Scholar 

  • Rousset, J. P., Gilson, E., and Hofnung, M. (1986).J. Mol. Biol. 191, 313–320.

    Google Scholar 

  • Ryan, J. P., and Bassford, P. J. (1985).J. Biol. Chem. 260, 14832–14837.

    Google Scholar 

  • Ryan, J. P., Duncan, M. C., Bankaitis, V. A., and Bassford, P. J. (1986).J. Biol. Chem. 261, 3389–3395.

    Google Scholar 

  • Stader, J., Benson, S. A., and Silhavy, T. J. (1986).J. Biol. Chem. 261, 15075–15080.

    Google Scholar 

  • Vlasuk, G. P., Inouye, S., Ito, H., Itakura, K., and Inouye, M. (1983).J. Biol. Chem. 258, 7141–7148.

    Google Scholar 

  • Vlasuk, G. P., Inouye, S., and Inouye, M. (1984).J. Biol. Chem. 259, 6195–6200.

    Google Scholar 

  • von Heijne, G. (1983).Eur. J. Biochem. 133, 17–21.

    Google Scholar 

  • von Heijne, G. (1986a).Nucleic Acids Res. 14, 4683–4690.

    Google Scholar 

  • von Heijne, G. (1986b).J. Mol. Biol. 192, 287–290.

    Google Scholar 

  • Watson, M. E. E. (1984).Nucleic Acids Res. 12, 5145–5164.

    Google Scholar 

  • Wickner, W. (1979).Annu. Rev. Biochem. 48, 23–45.

    Google Scholar 

  • Wu, H. C. (1987). InBacterial Outer Membranes as Model Systems (Inouye, M., ed.), Wiley, New York, pp. 37–71.

    Google Scholar 

  • Yamaguchi, K., Yu, F., and Inouye, M. (1988).Cell 53, 423–432.

    Google Scholar 

  • Yamane, K., and Mizushima, S. (1988).J. Biol. Chem. 263, 19690–19696.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gennity, J., Goldstein, J. & Inouye, M. Signal peptide mutants ofEscherichia coli . J Bioenerg Biomembr 22, 233–269 (1990). https://doi.org/10.1007/BF00763167

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00763167

Key Words

Navigation