Skip to main content
Log in

Boosted large-scale production and purification of a thermostable archaeal phosphotriesterase-like lactonase for organophosphate decontamination

  • Fermentation, Cell Culture and Bioengineering - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Thermostable phosphotriesterase-like lactonases (PLLs) from extremophile archaea, like SsoPox from Sulfolobus solfataricus, are attractive biotechnological tools with industrial applications as organophosphate decontaminants, but their manufacturing still remains an unresolved issue because of the high costs and the low production yields. In this paper, for the first time, an efficient biotechnological process for the production and purification of a recombinant, engineered PLL, SsoPox W263F, expressed in E. coli, has been set up by studying new induction strategies, by designing high cell density cultivations and a new membrane-based downstream process. In fed batches, the enzyme production was boosted of 69-fold up to 4660.0 U L−1 using galactose as inducer in the replacement of IPTG; the process was scalable from 2.5 up to 150 L. By coupling a single thermo-precipitation step and an ultrafiltration process, a total enzyme recovery of 77% with a purity grade of almost 80% was reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Babaeipour V, Shojaosadati SA, Khalilzadeh R, Maghsoudi N, Tabandeh F (2008) A proposed feeding strategy for the overproduction of recombinant proteins in Escherichia coli. Biotechnol Appl Biochem 49:141–147. doi:10.1042/BA20070089

    Article  CAS  PubMed  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  3. Carullo P, Cetrangolo PG, Mandrich L, Manco G, Febbraio F (2015) Fluorescence spectroscopy approaches for the development of a real-time organophosphate detection system using an enzymatic sensor. Sensors 15:3932–3951. doi:10.3390/s150203932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carvalho RJ, Cabrera-Crespo J, Tanizaki MM, Gonçalves VM (2011) Development of production and purification processes of recombinant fragment of pneumococcal surface protein A in Escherichia coli using different carbon sources and chromatography sequences. Appl Microbiol Biotechnol 94:683–694. doi:10.1007/s00253-011-3649-9

    Article  PubMed  Google Scholar 

  5. Cha HJ, Wu CF, Valdes JJ, Rao G, Bentley WE (2000) Observations of green fluorescent protein as a fusion partner in genetically engineered Escherichia coli: monitoring protein expression and solubility. Biotechnol Bioeng 67:565–574

    Article  CAS  PubMed  Google Scholar 

  6. Cheng TC, Harvey SP, Chen GL (1996) Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme. Appl Environ Microbiol 62:1636–1641

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Donovan RS, Robinson CW, Glick BR (1996) Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J Ind Microbiol 16:145–154

    Article  CAS  PubMed  Google Scholar 

  8. Gunnell D, Eddleston M, Phillips MR, Konradsen F (2007) The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health 7:357. doi:10.1186/1471-2458-7-357

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gupta RC (2009) Global impact of chemical warfare agents used before and after 1945. In: Gupta RC (ed) Handbook of toxicology of chemical warfare agents, 2nd edn. Accademic Press/Elsevier, New York, pp 23–24

  10. Han L, Enfors SO, Häggström L (2003) Escherichia coli high-cell-density culture: carbon mass balances and release of outer membrane components. Bioprocess Biosyst Eng 25:205–212. doi:10.1007/s00449-002-0300-2

    Article  CAS  PubMed  Google Scholar 

  11. Hiblot J, Gotthard G, Chabriere E, Elias M (2012) Characterisation of the organophosphate hydrolase catalytic activity of SsoPox. Sci rep 2:779. doi:10.1038/srep00779

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hopkins TR (1991) Physical and chemical cell disruption for the recovery of intracellular protein. In: Seetharam R, Sharma SK (eds) Purification and analysis of recombinant proteins. Macel Dekker, New York, pp 57–84

    Google Scholar 

  13. Horne I, Qiu X, Russell RJ, Oakeshott JG (2003) The phosphotriesterase gene opdA in Agrobacterium radiobacter P230 is transposable. FEMS Microbiol Lett 222:1–8. doi:10.1016/S0378-1097(03)00211-8

    Article  CAS  PubMed  Google Scholar 

  14. Jacquet P, Daudé D, Bzdrenga J, Masson P, Elias M, Chabrière E (2016) Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes. Environ Sci Pollut Res. doi:10.1007/s11356-016-6143-1

    Google Scholar 

  15. Jaipieam S, Visuthismajsrn P, Sutheravut P, Siriwong W, Thoumsang S, Borjam M, Robson M (2009) Organophosphate pesticides residues in drinking water from artesian wells and health risk assessment of agricultural communities, Thailand. Hum Ecol Risk Assess Int J 15:1304–1316

    Article  CAS  Google Scholar 

  16. Jin LH, Kwun K, Lee J (2008) Intra- and extra-cellular organophosphorus hydrolase production with recombinant E. coli using fed-batch fermentation. World J Microbiol Biotechnol 24:1657–1662. doi:10.1007/s11274-008-9679-5

    Article  CAS  Google Scholar 

  17. Kapoor M, Rajagopal R (2011) Enzymatic bioremediation of organophosphorus insecticides by recombinant organophosphorous hydrolase. Int Biodeterior Biodegradation 65:896–901. doi:10.1016/j.ibiod.2010.12.017

    Article  CAS  Google Scholar 

  18. Knoll A, Bartsch S, Husemann B, Engel P, Schroer K, Ribeiro B, Stöckmann C, Seletzky J, Büchs J (2007) High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors. J Biotechnol 132:167–179. doi:10.1016/j.jbiotec.2007.06.010

    Article  CAS  PubMed  Google Scholar 

  19. Korz DJ, Rinas U, Hellmuth K, Sanders EA, Deckwer WD (1995) Simple fed-batch technique for high cell density cultivation of Escherichia coli. J Biotechnol 39:59–65

    Article  CAS  PubMed  Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  21. Lara AR, Caspeta L, Gosset G, Bolívar F, Ramírez OT (2008) Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures. Biotechnol Bioeng 99:893–901. doi:10.1002/bit.21664

    Article  CAS  PubMed  Google Scholar 

  22. Lee SY, Choi J, Wong HH (1999) Recent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review. Int J Biol Macromol 25:31–36

    Article  CAS  PubMed  Google Scholar 

  23. Manco G, Nucci R, Febbraio F (2009) Use of esterase activities for the detection of chemical neurotoxic agents. Protein Pept Lett 16:1225–1234. doi:10.2174/092986609789071252

    Article  CAS  PubMed  Google Scholar 

  24. Martin TF (1989) Cell cracking: permeabilizing cells to macromolecular probes. Methods Enzymol 168:225–233

    Article  CAS  PubMed  Google Scholar 

  25. Masson P, Lushchekina SV (2016) Emergence of catalytic bioscavengers against organophosphorus agents. Chemico-Biological Interaction. doi:10.1016/j.cbi.2016.02.010

    Google Scholar 

  26. McLoughlin SY, Jackson C, Liu JW, Ollis DL (2004) Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. Appl Environ Microbiol 70:404–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Merone L, Mandrich L, Rossi M, Manco G (2005) A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Extremophiles 9:297–305

    Article  CAS  PubMed  Google Scholar 

  28. Merone L, Mandrich L, Rossi M, Porzio E, Rossi M, Müller S, Reiter G, Worek F, Manco G (2010) Improving the promiscuous nerve agent hydrolase activity of a thermostable archaeal lactonase. Bioresour Technol 101:9204–9212. doi:10.1016/j.biortech.2010.06.102

    Article  CAS  PubMed  Google Scholar 

  29. Mulchandani A, Kaneva I, Chen W (1999) Detoxification of organophosphate nerve agents by immobilized Escherichia coli with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 63:216–223. doi:10.1002/(SICI)1097-0290(19990420)63:2<216

    Article  CAS  PubMed  Google Scholar 

  30. Ningfeng W, Minjie D, Guoyi L, Xiaoyu C, Bin Y, Yunliu F (2004) Cloning and expression of ophc2, a new organophosphorus hydrolase gene. Chin Sci Bull 49:1245–1249. doi:10.1360/04wc0146

    Article  Google Scholar 

  31. Arun V (2005) Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction, 3rd edn. The Technical Secretariat of the Organisation for the Prohibition of Chemical Weapons, Hague

    Google Scholar 

  32. Porzio E, Merone L, Mandrich L, Rossi M, Manco G (2007) A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfataricus. Biochimie 89:625–636

    Article  CAS  PubMed  Google Scholar 

  33. Ragnarsdottir KV (2000) Environmental fate and toxicology of organophosphate pesticides. J Geol Society 157:859–876. doi:10.1144/jgs.157.4.859

    Article  CAS  Google Scholar 

  34. Restaino OF, Baskar U, Paul P, Li L, De Rosa M, Dordick JS, Linhardt RJ (2013) High cell density cultivation of a recombinant E. coli strain expressing a key enzyme in bioengineered heparin production. Appl Microbiol Biotechnol 97:3893–3900. doi:10.1007/s00253-012-4682-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Restaino OF, Cimini D, De Rosa M, Catapano A, De Rosa M, Schiraldi C (2011) High cell density cultivation of Escherichia coli K4 in a microfiltration bioreactor: a step towards improvement of chondroitin precursor production. Microb Cell Fact 10:10. doi:10.1186/1475-2859-10-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saraswat M, Musante L, Ravidá A, Shortt B, Byrne B, Holthofer H (2013) Preparative purification of recombinant proteins: current status and future trends. BioMed Res Int. doi:10.1155/2013/312709

    PubMed  PubMed Central  Google Scholar 

  37. Schiraldi C, Carcarino IL, Alfano A, Restaino OF, Panariello A, De Rosa Mario (2011) Purification of chondroitin precursor from Escherichia coli K4 fermentation broth using membrane processing. Biotechnol J 6(4):410–419. doi:10.1002/biot.201000266

    Article  CAS  PubMed  Google Scholar 

  38. Schiraldi C, Alfano A, Cimini D, De Rosa M, Panariello A, Restaino OF, De Rosa M (2012) Application of a 22L scale membrane bioreactor and cross-flow ultrafiltration to obtain purified chondroitin. Biotechnol Prog 28:1012–1018. doi:10.1002/btpr

    Article  CAS  PubMed  Google Scholar 

  39. Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164. doi:10.1038/nrmicro2050

    Article  CAS  PubMed  Google Scholar 

  40. Sinha SN, Vasudev K, Vishnu Vardhana Rao M, Odetokun M (2011) Quantification of organophosphate insecticides in drinking water in urban areas using lyophilisation and high-performance liquid chromatography-electrospray ionization-mass spectrometry techniques. Int J Mass Spectrom 300(1):12–20

    Article  CAS  Google Scholar 

  41. Wu CF, Valdes JJ, Rao G, Bentley WE (2001) Enhancement of organophosphorous hydrolase yield in Escherichia coli using multiple gene fusions. Biotechnol Bioeng 75:100–103

    Article  CAS  PubMed  Google Scholar 

  42. Xu J, Banerjee A, Pan S, Jian Li Z (2012) Galactose can be an inducer for production of therapeutic proteins by auto-induction using E. coli BL21 strains. Protein Expr Purif 83:30–36. doi:10.1016/j.pep.2012.02.014

    Article  CAS  PubMed  Google Scholar 

  43. Yang H, Carr PD, Yu McLoughlin S, Liu JW, Horne I, Qiu X, Jeffries CMJ, Russell RJ, Oakeshott JG, Ollis DL (2003) Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution. Protein Eng 16:135–145. doi:10.1093/proeng/gzg015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Ministry of the University and Research (MIUR) and by the European Union Commission (project PON_01585 to Giuseppe Manco). All the authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Odile Francesca Restaino or Chiara Schiraldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Restaino, O.F., Borzacchiello, M.G., Scognamiglio, I. et al. Boosted large-scale production and purification of a thermostable archaeal phosphotriesterase-like lactonase for organophosphate decontamination. J Ind Microbiol Biotechnol 44, 363–375 (2017). https://doi.org/10.1007/s10295-016-1892-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1892-x

Keywords

Navigation