Skip to main content
Log in

Fungal variegatic acid and extracellular polysaccharides promote the site-specific generation of reactive oxygen species

  • Biocatalysis - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

This study aims to clarify the role of variegatic acid (VA) in fungal attack by Serpula lacrymans, and also the generation and scavenging of reactive oxygen species (ROS) by the fungus. VA promotes a mediated Fenton reaction to generated ROS after oxalate solubilizes oxidized forms of iron. The fungal extracellular matrix (ECM) β-glucan scavenged ROS, and we propose this as a mechanism to protect the fungal hyphae while ROS generation is promoted to deconstruct the lignocellulose cell wall. A relatively high pH (4.4) also favored Fe(III) transfer from oxalate to VA as opposed to a lower pH (2.2) conditions, suggesting a pH-dependent Fe(III) transfer to VA employed by S. lacrymans. This permits ROS generation within the higher pH of the cell wall, while limiting ROS production near the fungal hyphae, while β-glucan from the fungal ECM scavenges ROS in the more acidic environments surrounding the fungal hyphae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aguiar A, Souza-cruz PB, Ferraz A (2006) Oxalic acid, Fe3+-reduction activity and oxidative enzymes detected in culture extracts recovered from Pinus taeda wood chips biotreated by Ceriporiopsis subvermispora. Enzyme Microb Technol 38:873–878. doi:10.1016/j.enzmictec.2004.12.036

    Article  CAS  Google Scholar 

  2. Arantes V, Goodell B (2014) Current understanding of brown rot fungal biodegradation mechanisms: a review. Deterioration and protection of sustainable biomaterials. ACS Symp Ser 1158:3–21

    Article  CAS  Google Scholar 

  3. Arantes V, Jellison J, Goodell B (2012) Peculiarities of brown rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 94:323–338. doi:10.1007/s00253-012-3954-y

    Article  CAS  PubMed  Google Scholar 

  4. Arantes V, Qian Y, Milagres AMF, Jellison J, Goodell B (2009) Effect of pH and oxalic acid on the reduction of Fe3+ by a biomimetic chelator and on Fe3+ desorption/adsorption onto wood: implications for brown rot decay. Int Biodeterior Biodegrad 63:478–483. doi:10.1016/j.ibiod.2009.01.004

    Article  CAS  Google Scholar 

  5. Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339. doi:10.1023/A:1020218608266

    Article  CAS  PubMed  Google Scholar 

  6. Connolly JH, Jellison J (1995) Calcium translocation, calcium oxalate accumulation, and hyphal sheath morphology in the white-rot fungus Resinicium bicolor. Can J Bot 73:927–936. doi:10.1139/b95-101

    Article  CAS  Google Scholar 

  7. Cornell R, Schindler P (1987) Photochemical dissolution of goethite in acid/oxalate solution. Clays Clay Miner 35:347–352. doi:10.1346/CCMN.1987.0350504

    Article  CAS  Google Scholar 

  8. Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM, Zimmer M (2015) Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119. doi:10.1016/j.cbpa.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  9. Crowley D, Wang Y, Reid C, Szaniszlo P (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198. doi:10.1007/BF00011873

    Article  CAS  Google Scholar 

  10. De Endredy A (1963) Estimation of free iron oxides in soils and clays by a photolytic method. Clay Miner 29:209–217. doi:10.1180/claymin.1963.005.29.07

    Article  Google Scholar 

  11. Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M, Coutinho PM, Cullen D, de Vries RP, Gathman A, Goodell B, Henrissat B, Ihrmark K, Kauserud H, Kohler A, LaButti K, Lapidus A, Lavin JL, Lee YH, Lindquist E, Lilly W, Lucas S, Morin E, Murat C, Oguiza JA, Park J, Pisabarro AG, Riley R, Rosling A, Salamov A, Schmidt O, Schmutz J, Skrede I, Stenlid J, Wiebenga A, Xie X, Kües U, Hibbett DS, Hoffmeister D, Högberg N, Martin F, Grigoriev IV, Watkinson SC (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765. doi:10.1126/science.1205411

    Article  CAS  PubMed  Google Scholar 

  12. Edwards R, Elsworthy G (1967) Variegatic acid, a new tetronic acid responsible for the blueing reaction in the fungus Suillus (boletus) variegatus (Swartz ex Fr.). Chem Commun (London) 8:373–374. doi:10.1039/C1967000373B

    Article  Google Scholar 

  13. Espejo E, Agosin E (1991) Production and degradation of oxalic acid by brown rot fungi. Appl Environ Microbiol 57:1980–1986

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ewen RJ, Jones PRH, Ratcliffe NM, Spencer-Phillips PTN (2004) Identification by gas chromatography-mass spectrometry of the volatile organic compounds emitted from the wood-rotting fungi Serpula lacrymans and Coniophora puteana, and from Pinus sylvestris timber. Mycol Res 108:806–814. doi:10.1017/s095375620400022x

    Article  CAS  PubMed  Google Scholar 

  15. Filley T, Cody G, Goodell B, Jellison J, Noser C, Ostrofsky A (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 33:111–124. doi:10.1016/S0146-6380(01)00144-9

    Article  CAS  Google Scholar 

  16. Giese EC, Gascon J, Anzelmo G, Barbosa AM, da Cunha MA, Dekker RF (2015) Free-radical scavenging properties and antioxidant activities of botryosphaeran and some other β-d-glucans. Int J Biol Macromol 72:125–130. doi:10.1016/j.ijbiomac.2014.07.046

    Article  CAS  PubMed  Google Scholar 

  17. Gill M (1994) Pigments of fungi (Macromycetes). Nat Prod Rep 11:67–90. doi:10.1039/NP9941100067

    Article  CAS  PubMed  Google Scholar 

  18. Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53:133–162. doi:10.1016/S0168-1656(97)01681-7

    Article  CAS  Google Scholar 

  19. Goodell B, Nakamura M, Jellison J (2014) The chelator mediated Fenton system in the brown rot fungi: details of the mechanism, and reasons why it has been ineffective as a biomimetic treatment in some biomass applications-a review. The 45th IRG annual meeting, St George

  20. Goodell B, Nicholas D, Schultz T (2003) Brown rot fungal degradation of wood: our evolving view. Wood deterioration and preservation, advances in our changing world. The 221st national meeting of the American Chemical Society, San Diego

  21. Green F, Larsen MJ, Winandy JE, Highley TL (1991) Role of oxalic acid in incipient brown rot decay. Mater Org 26:191–213

    CAS  Google Scholar 

  22. Gutiérrez A, Martinez M, Almendros G, González-Vila FJ, Martinez A (1995) Hyphal-sheath polysaccharides in fungal deterioration. Sci Total Environ 167:315–328. doi:10.1016/0048-9697(95)04592-O

    Article  Google Scholar 

  23. Hanson G, Berliner L (2009) High resolution EPR: applications to metalloenzymes and metals in medicine, vol 28. Springer, New York

    Book  Google Scholar 

  24. Harmsen L (1960) Taxonomic and cultural studies on brown spored species of the genus Merulius. Friesia 6:233–277

    Google Scholar 

  25. Hider RC (1984) Siderophore mediated absorption of iron. Siderophores from microorganisms and plants. Springer, Berlin, pp 25–87

    Chapter  Google Scholar 

  26. Hyde SM, Wood PM (1997) A mechanism for production of hydroxyl radicals by the brown rot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology 143:259–266. doi:10.1099/00221287-143-1-259

    Article  CAS  Google Scholar 

  27. Immunomedic (2016) Beta glucan from Immunomedic, Norway. http://cls.technology/betox-93/

  28. Jaehrig SC, Rohn S, Kroh LW, Wildenauer FX, Lisdat F, Fleischer L-G, Kurz T (2008) Antioxidative activity of (1 → 3), (1 → 6)-β-d-glucan from Saccharomyces cerevisiae grown on different media. LWT Food Sci Technol 41:868–877. doi:10.1016/j.lwt.2007.06.004

    Article  CAS  Google Scholar 

  29. Jennings DH, Bravery AF (1991) Serpula lacrymans: fundamental biology and control strategies. Wiley, Chichester

    Google Scholar 

  30. Jensen KA, Houtman CJ, Ryan ZC, Hammel KE (2001) Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 67:2705–2711. doi:10.1128/aem.67.6.2705-2711.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kasuga A, Aoyagi Y, Sugahara T (1995) Antioxidant activity of fungus Suihs bovinus (L: Fr.) O. Kuntze. J Food Sci 60:1113–1115. doi:10.1111/j.1365-2621.1995.tb06304.x

    Article  CAS  Google Scholar 

  32. Kauserud H, Knudsen H, Högberg N, Skrede I (2012) Evolutionary origin, worldwide dispersal, and population genetics of the dry rot fungus Serpula lacrymans. Fungal Biol Rev 26:84–93. doi:10.1016/j.fbr.2012.08.001

    Article  Google Scholar 

  33. Kauserud H, Saegården IB, Sætre G-P, Knudsen H, Stensrud Ø, Schmidt O, Sugiyama T, Högberg N (2007) Asian origin and rapid global spread of the destructive dry rot fungus Serpula lacrymans. Mol Ecol 16:3350–3360. doi:10.1111/j.1365-294X.2007.03387.x

    Article  CAS  PubMed  Google Scholar 

  34. Korripally P, Timokhin VI, Houtman CJ, Mozuch MD, Hammel KE (2013) Evidence from Serpula lacrymans that 2,5-dimethoxyhydroquinone is a lignocellulolytic agent of divergent brown rot Basidiomycetes. Appl Environ Microbiol 79:2377–2383. doi:10.1128/aem.03880-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mäkelä MR, Hildén K, Lundell TK (2010) Oxalate decarboxylase: biotechnological update and prevalence of the enzyme in filamentous fungi. Appl Microbiol Biotechnol 87:801–814. doi:10.1007/s00253-010-2650-z

    Article  PubMed  Google Scholar 

  36. Machová E, Bystrický S (2013) Antioxidant capacities of mannans and glucans are related to their susceptibility of free radical degradation. Int J Biol Macromol 61:308–311. doi:10.1016/j.ijbiomac.2013.07.016

    Article  PubMed  Google Scholar 

  37. Misiek M, Hoffmeister D (2012) Sesquiterpene aryl ester natural products in North American Armillaria species. Mycol Prog 11:7–15. doi:10.1007/s11557-010-0720-3

    Article  Google Scholar 

  38. Palmer J, Murmanis L, Highley T (1983) Visualization of hyphal sheath in wood-decay Hymenomycetes. I. Brown rotters. Mycologia 75:995–1004. doi:10.2307/3792655

    Article  Google Scholar 

  39. Palmer J, Murmanis L, Highley T (1983) Visualization of hyphal sheath in wood-decay Hymenomycetes. II. White-rotters. Mycologia 75:1005–1010. doi:10.2307/3792656

    Article  Google Scholar 

  40. Qian YH, Goodell B, Felix CC (2002) The effect of low molecular weight chelators on iron chelation and free radical generation as studied by ESR measurement. Chemosphere 48:21–28. doi:10.1016/S0045-6535(02)00044-9

    Article  CAS  PubMed  Google Scholar 

  41. Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R (2004) Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331:370–375. doi:10.1016/j.ab.2004.03.049

    Article  CAS  PubMed  Google Scholar 

  42. Ruel K, Joseleau JP (1991) Involvement of an extracellular glucan sheath during degradation of Populus wood by Phanerochaete chrysosporium. Appl Environ Microbiol 57:374–384

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schilling JS (2006) Oxalate production and cation translocation during wood biodegradation by fungi. The University of Maine

  44. Schmidt O (2006) Wood and tree fungi. Springer, Berlin

    Google Scholar 

  45. Shinde R, Balakrishnan I (1991) EPR studies of iron substitution in the molecular sieve VPI-5. J Phys D Appl Phys 24:1486

    Article  CAS  Google Scholar 

  46. Slameňová D, Lábaj J, Kogan G, Šandula J, Bresgen N, Eckl P (2003) Protective effects of fungal (1 → 3)-β-d-glucan derivatives against oxidative DNA lesions in V79 hamster lung cells. Cancer Lett 198:153–160. doi:10.1016/S0304-3835(03)00336-7

    Article  PubMed  Google Scholar 

  47. Takao S (1965) Organic acid production by basidiomycetes I. Screening of acid-producing strains. Appl Microbiol 13:732–737

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Varela E, Tien M (2003) Effect of pH and oxalate on hydroquinone-derived hydroxyl radical formation during brown rot wood degradation. Appl Environ Microbiol 69:6025–6031. doi:10.1128/aem.69.10.6025-6031.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vidović SS, Mujić IO, Zeković ZP, Lepojević ŽD, Tumbas VT, Mujić AI (2010) Antioxidant properties of selected Boletus mushrooms. Food Biophys 5:49–58. doi:10.1007/s11483-009-9143-6

    Article  Google Scholar 

  50. Vincent EB, Roger GB (1955) pH values of the Clark and Lubs uffer solution buffer solutions at 25°C. J Res Nat Bur Stand 55:197–200. doi:10.6028/jres.055.021

    Article  Google Scholar 

  51. Watkinson SC, Eastwood D (2012) Serpula lacrymans, Wood and Buildings. Adv Appl Microbiol 78:121–149. doi:10.1016/B978-0-12-394805-2.00005-1

    Article  CAS  PubMed  Google Scholar 

  52. Zhu Y, Zhuang LP, Goodell B, Cao JZ, Mahaney J (2016) Iron sequestration in brown rot fungi by oxalate and the production of reactive oxygen species (ROS). Int Biodeterior Biodegrad 109:185–190. doi:10.1016/j.ibiod.2016.01.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by the Forestry Industry Research Special Funds for Public Welfare Projects (#201204702-B2), and was also supported in part by the USDA-HATCH Project S-1041 VA-136288, and by The Research Council of Norway (243663/E50 BioMim). Mr. Zhu was financially supported by China Scholarship Council (#201406510014). We thank Dr. Xueyang Feng for providing access to the NanoDrop 2000c spectrophotometer. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinzhen Cao or Barry Goodell.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Mahaney, J., Jellison, J. et al. Fungal variegatic acid and extracellular polysaccharides promote the site-specific generation of reactive oxygen species. J Ind Microbiol Biotechnol 44, 329–338 (2017). https://doi.org/10.1007/s10295-016-1889-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1889-5

Keywords

Navigation