Skip to main content
Log in

Antioxidant Properties of Selected Boletus Mushrooms

  • Original Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Considering the growing interest for mushrooms and the demand search of natural antioxidants sources, the aim of this study was to investigate the antioxidant properties of two edible widely used Boletus species, Boletus edulis, and Boletus auranticus, collected from Istra region in Croatia in late summer 2007. To evaluate the antioxidant properties and content of antioxidant compounds, scavenging capacity on DPPH˙, OH˙, and O2˙ radicals, reducing power and capacity to inhibit lipid peroxidation has been investigated. It is determined that content of total phenols (41.82 ± 0.08 mg gallic acid equivalent per gram of dry extract) was higher for B. edulis. Using high performance liquid chromatography/diode array detector analysis, the main antioxidant compound, variegatic acid, has been detected and quantified. 1,1-Diphenyl-2-picryl-hydrazyl-hydrate assay was used as a preliminary free radical–scavenging evaluation. By this assay, it has been found that B. edulis dry mushroom extract exhibits 50% of inhibition value at the extract concentration of 0.016 ± 0.0003 mg/ml. The extracts were capable of reducing iron(III) and, thus, are capable of donating electrons. Using electron paramagnetic resonance spin-trapping and spin-probing techniques, activity against relevant reactive species, ˙OH and O2˙ radical, was analyzed for both mushroom extracts. Both investigated extracts are determined as good inhibitors for ˙OH radical reduction, and both exhibited significant capacity for scavenging O2˙ radical and for that could help to prevent or meliorate oxidative damage. Only B. edulis extract prevents lipid peroxidation. Investigated mushroom extracts could represent easily accessible natural antioxidant resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LDL:

Low density proteins

DPPH:

1,1-Diphenyl-2-picryl-hydrazyl-hydrate

BHA:

Butylated hydroxyanisole

7-DS:

2-(5-Carboxypentyl)-2-undecyl-4,4-dimethyloxazolidine-3-oxylstearate

DEPMPO:

5-Diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide

GAE:

Gallic acid equivalent

CE:

Catechin equivalent

RI:

Relative inhibition

LC/MS:

Liquid chromatography/mass spectrometry

HPLC/DAD:

High performance liquid chromatography/diode array detector

EPR:

Electron paramagnetic resonance

TP:

Total phenolic content

TF:

Total flavonoid content

UV/VIS:

Ultraviolet/visible spectroscopy

IC50 :

50% of inhibition value

RSC:

radical scavenging capacity

References

  1. J.T. Coyle, P. Puttfarcken, Science 262, 689–695 (1993)

    Article  CAS  Google Scholar 

  2. N. Kaul, H.J. Forman, Free Radic. Biol. Med. 267, 401–405 (1996)

    Article  Google Scholar 

  3. I. Margaill, K. Plotkine, D. Lerouet, Free Radic. Biol. Med. 39, 429–443 (2005). doi:10.1016/j.freeradbiomed.2005.05.003

    Article  CAS  Google Scholar 

  4. J.M. Roberts, C.A. Hubel, Lancet 354, 788–789 (1999)

    CAS  Google Scholar 

  5. J.W. Lampe, Am. J. Clin. Nutr. 70, 475S–490S (1999)

    CAS  Google Scholar 

  6. K.A. Steinmetz, J.D. Potter, J. Am. Diet. Assoc. 96, 1027–1039 (1996)

    Article  CAS  Google Scholar 

  7. P.C.H. Hollman, M.B. Katan, Food Chem. Toxicol. 37, 937–942 (1999). doi:10.1016/s0278-6915(99)00079-4

    Article  CAS  Google Scholar 

  8. C. Kaur, H.C. Kapoor, Int. J. Sci. Technol. 36, 703–725 (2001). doi:10.1111/j.1365-2621.2001.00513.x

    Article  CAS  Google Scholar 

  9. E.J. Middleton, C. Kandaswami, in The Flavonoids: Advances in Research since 1986, ed. by J.B. Harborne (Chapman and Hall, London, 1993), pp. 619–652

    Google Scholar 

  10. R.L. Prior, G. Cao, Nutr. Clin. Care 3, 279–288 (2000). doi:10.1046/j.1523-5408.2000.00074.x

    Article  Google Scholar 

  11. T. Hatano, R. Edamatsu, A. Mori, Y. Fujita, E. Yasuhara, Chem. Pharm. Bull. 37, 2016–2021 (1989)

    CAS  Google Scholar 

  12. J.A. Vinson, Y.A. Dabbagh, M.M. Serry, J. Jang, J. Agric. Food Chem. 47(7), 2502–2504 (1995). doi:10.1021/jf9902393

    Article  CAS  Google Scholar 

  13. J.R. Soares, T.C.P. Dins, A.P. Cunha, L.M. Ameida, Free Radic. Res. 26(5), 469–478 (1997). doi:10.3109/10715769709084484

    Article  CAS  Google Scholar 

  14. A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N. Vidal, Food Chem. 97, 654–660 (2006). doi:10.1016/j.foodchem.2005.04.028

    Article  CAS  Google Scholar 

  15. P. Manzi, A. Aguzzi, L. Pizzoferrato, Food Chem. 73, 321–325 (2001). doi:10.1016/S0308-8146(00)00304-6

    Article  CAS  Google Scholar 

  16. A.E. Rodriguez Estrada, H.J. Lee, R.B. Beelman, M. Jimenez Gasco, D.J. Royse, World J. Microbiol. Biotechnol. 25, 1597–1607 (2009). doi:10.1007/s11274-009-0049-8

    Article  CAS  Google Scholar 

  17. M. Ryan-Harshman, W. Aldoori, Can. J. Diet. Pract. Res. 66, 98–102 (2005). doi:10.3148/66.2.2005.98

    Article  Google Scholar 

  18. J. Ey, E. Schoming, D. Taubert, J. Agric. Food Chem. 55, 6466–6474 (2007). doi:10.1021/jf071328f

    Article  CAS  Google Scholar 

  19. A. Kasuga, Y. Aoyagi, T. Sugahara, J. Food Sci. 60, 1113–1115 (1995). doi:10.1111/j.1365-2621.1995.tb06304.x

    Article  CAS  Google Scholar 

  20. V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16(3), 144–158 (1965)

    CAS  Google Scholar 

  21. M.P. Kähkönen, A.I. Hopia, H.J. Vuorela, J.P. Rauha, K. Pihlaja, T.S. Kujala, M. Heinonen, J. Agric. Food Chem. 47(10), 3954–3962 (1999). doi:10.1021/jf990146l

    Article  CAS  Google Scholar 

  22. K.R. Markham, in Methods in Plant Biochemistry, ed. by J.B. Harborne, P.M. Dey (Academic, London, 1989), pp. 193–237

    Google Scholar 

  23. J.C. Espin, C. Soler-Rivas, H.J. Wichers, J. Agric. Food Chem. 48(3), 648–656 (2000). doi:10.1021/jf9908188

    Article  CAS  Google Scholar 

  24. H. Lundqvist, S. Danmark, U. Johansson, H. Gustafsson, K. Ollinger, J. Biochem. Biophys. Methods 70, 1059–1065 (2008). doi:10.1016/j.jbbm.2007.05.014

    Article  CAS  Google Scholar 

  25. I. Spasojevic, M. Mojovic, D. Blagojevic, S. Spasic, D. Jones, A. Nikolic-Kokic, M. Spasic, Carbohydr. Res. 344, 80–84 (2009). doi:10.1016/j.carres.2008.09.025

    Article  CAS  Google Scholar 

  26. J. Zivkovic, Z. Zekovic, I. Mujic, D. Godjevac, M. Mojovic, A. Mujic, I. Spasojevic, Food Biophysics 4, (2009). doi:10.1007/s11483-009-9109-8

  27. M. Oyaizu, Jpn. J. Nutr. 44, 307–315 (1986)

    CAS  Google Scholar 

  28. R.A. Cooper, N. Engl. J. Med. 297, 371–377 (1977)

    CAS  Google Scholar 

  29. L.M. Cheung, P.C.K. Cheung, V.E.C. Ooi, Food Chem. 81, 249–255 (2003). doi:10.1016/s0308-8146(2)00419-3

    Article  CAS  Google Scholar 

  30. A. Turkoglu, I. Kivrak, N. Mercan, M.E. Duru, K. Gezer, H. Turkoglu, A. J. B. 5, 1146–1150 (2006)

    CAS  Google Scholar 

  31. L.K. Jagadish, R. Shenbaagaraman, V. Venkatarishnan, V. Kaviyarasan, J. Mol. Biol. Biotechnol. 1, 20–29 (2008)

    Google Scholar 

  32. N. Cotelle, J.L. Bernier, J.P. Catteau, J. Pommery, J.C. Wallet, E.M. Gaydou, Free Radic. Biol. Med. 20, 35–43 (1996). doi:10.1016/0891-5849(95)02014-4

    Article  CAS  Google Scholar 

  33. J. Robak, R.J. Dryglewski, Biochem. Pharmacol. 37, 83–88 (1988). doi:10.1016/0006-2952(88)90169-4

    Article  Google Scholar 

  34. S.R. Husain, J. Cillard, P. Cillard, Phytochemistry 26, 2489–2491 (1987). doi:10.1016/S0031-9422(00)83860-1

    Article  CAS  Google Scholar 

  35. J. Torel, J. Chillard, P. Chillard, Phytochemistry 25, 383–385 (1986). doi:10.1016/S0031-9422(00)85485-0

    Article  CAS  Google Scholar 

  36. F. Shahidi, J.P.K.P.D. Wanasusdara, Crit. Rev. Food Sci. Nutr. 32, 67–103 (1992)

    Article  CAS  Google Scholar 

  37. B. Bozin, N.M. Dukic, I. Samojlik, G. Anackov, R. Igic, Food Chem. 111, 925–929 (2008). doi:10.1016/j.foodchem.2008.04.071

    Article  CAS  Google Scholar 

  38. V. Vrchovska, C. Sousa, P. Valentao, F. Ferreres, J.A. Pereira, R.M. Seabra, P.B. Andrade, Food Chem. 98, 416–425 (2006). doi:10.1016/j.foodchem.2005.06.019

    Article  CAS  Google Scholar 

  39. Z. Zekovic, I. Mujic, Z., Lepojevic, S. Vidovic, M. Radojkovic, S. Milosevic, S. Jokic, in 47th Meeting of the Serbian Chemical Society, 2009, pp. 198–201

  40. C. Vasco, J. Ruales, A.K. Eldin, Food Chem. 111, 816–823 (2008). doi:10.1016/j.foodchem.2008.04.054

    Article  CAS  Google Scholar 

  41. A.B. Olejniczak, J. Plesek, Z.J. Lesnikowski, Chem.–Eur. J. 13, 311–318 (2006)

    Article  CAS  Google Scholar 

  42. R.J. Capon, M. Stewart, R. Ratnajaker, E. Lacev, J.H. Gill, J. Nat. Prod. 70, 1746–1752 (2007). doi:10.1021/np0702483

    Article  CAS  Google Scholar 

  43. P. Davoli, R.W.S. Weber, J. Chromatogr. 964, 129–135 (2002). doi:10.1016/s0021-9673(02)00664-7

    Article  CAS  Google Scholar 

  44. Y.A. Zolotarev, A.K. Dadayan, YuA Borisov, N.F. Myasoedov, Dokl. Phys. Chem. 400, 15–18 (2005). doi:10.1007/s10634-005-0009-4

    Article  CAS  Google Scholar 

  45. W. Brand-Williams, M. Cuvelier, C. Berset, Lebensm. Wiss. Technol. 28, 25–30 (1995)

    CAS  Google Scholar 

  46. E. Rekka, P.N. Kourounakis, J. Pharm. Pharmacol. 43, 486–491 (1991)

    CAS  Google Scholar 

  47. C.L. Hsu, W. Chen, Y.M. Weng, C.Y. Tseng, Food Chem. 83, 85–92 (2003). doi:10.1016/s0308-8146(03)00053-0

    Article  CAS  Google Scholar 

  48. P.M. Kris-Etherton, K.D. Hecker, A. Bonanome, S.M. Coval, A.E. Binkoski, K.F. Hilpert, A.E. Griel, T.D. Etherton, Am. J. Med. 113, 71–88 (2002)

    Article  Google Scholar 

  49. H.J.D. Dorman, A. Peltoketo, R. Hiltunen, M.J. Tikkanen, Food Chem. 83(2), 255–262 (2003). doi:10.1016/S0308-8146(03)00088-8

    Article  CAS  Google Scholar 

  50. B. Halliwell, Nutr. Rev. 55, S44–S52 (1997). doi:10.1111/j.1753-4887.1997.tb06100.x

    Article  CAS  Google Scholar 

  51. F.L. Yen, T.H. Wu, L.T. Lin, T.M. Cham, C.C. Lin, Food Chem. 108, 455–462 (2008). doi:10.1016/j.foodchem.2007.10.077

    Article  CAS  Google Scholar 

  52. A.S. Meyer, A. Isaksen, Trends Food Sci. Technol. 9, 300–304 (1995). doi:10.1016/S0924-2244(00)89140-2

    Article  Google Scholar 

  53. H.C. Box, A.E. Maccubbin, Nutrition 13, 920–921 (1997)

    Article  CAS  Google Scholar 

  54. B. Halliwell, J.M.C. Gutteridge, Biochem. J. 27, 1–14 (1984). doi:10.1016/1357-2725(94)00084-O

    Google Scholar 

  55. J.M. Braughler, R.L. Chase, J.F. Pregenzer, Boichim. Biophys. Acta 921, 457–464 (1987)

    CAS  Google Scholar 

  56. C.A. Rice-Evans, N.J. Miller, G. Paganga, Free Radic. Biol. Med. 7(20), 933–956 (1996). doi:10.1016/0891-5849(95)02227-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senka S. Vidović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidović, S.S., Mujić, I.O., Zeković, Z.P. et al. Antioxidant Properties of Selected Boletus Mushrooms. Food Biophysics 5, 49–58 (2010). https://doi.org/10.1007/s11483-009-9143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-009-9143-6

Keywords

Navigation