Skip to main content

Biomanufacturing: history and perspective

Abstract

Biomanufacturing is a type of manufacturing that utilizes biological systems (e.g., living microorganisms, resting cells, animal cells, plant cells, tissues, enzymes, or in vitro synthetic (enzymatic) systems) to produce commercially important biomolecules for use in the agricultural, food, material, energy, and pharmaceutical industries. History of biomanufacturing could be classified into the three revolutions in terms of respective product types (mainly), production platforms, and research technologies. Biomanufacturing 1.0 focuses on the production of primary metabolites (e.g., butanol, acetone, ethanol, citric acid) by using mono-culture fermentation; biomanufacturing 2.0 focuses on the production of secondary metabolites (e.g., penicillin, streptomycin) by using a dedicated mutant and aerobic submerged liquid fermentation; and biomanufacturing 3.0 focuses on the production of large-size biomolecules—proteins and enzymes (e.g., erythropoietin, insulin, growth hormone, amylase, DNA polymerase) by using recombinant DNA technology and advanced cell culture. Biomanufacturing 4.0 could focus on new products, for example, human tissues or cells made by regenerative medicine, artificial starch made by in vitro synthetic biosystems, isobutanol fermented by metabolic engineering, and synthetic biology-driven microorganisms, as well as exiting products produced by far better approaches. Biomanufacturing 4.0 would help address some of the most important challenges of humankind, such as food security, energy security and sustainability, water crisis, climate change, health issues, and conflict related to the energy, food, and water nexus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Afeyan NB, Cooney CL (2006) Professor Daniel I.C. Wang: a legacy of education, innovation, publication, and leadership. Biotechnol Bioeng 95(2):206–217

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Gen 6(7):533–543

    CAS  Article  Google Scholar 

  4. 4.

    Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Chen H-G, Zhang Y-HP (2015) New biorefineries and sustainable agriculture: increased food, biofuels, and ecosystem security. Renew Sust Energy Rev 47:117–132

    CAS  Article  Google Scholar 

  6. 6.

    Davies HM (2010) Commercialization of whole-plant systems for biomanufacturing of protein products: evolution and prospects. Plant Biotechnol J 8(8):845–861

    Article  PubMed  Google Scholar 

  7. 7.

    Demain AL (2004) Pickles, pectin, and penicillin. Annu Rev Microbiol 58:1–42

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Demain AL (2007) REVIEWS: the business of biotechnology. Ind Biotechnol 3(3):269–283

    Article  Google Scholar 

  9. 9.

    Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27(3):297–306

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Department of Economic and Social Affairs, United Nations (2013) World economic and social survey 2013—sustainable development challenges

  11. 11.

    Dudley QM, Karim AS, Jewett MC (2015) Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol J 10:69–82

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Fessner W-D (2015) Systems Biocatalysis: development and engineering of cell-free “artificial metabolisms” for preparative multi-enzymatic synthesis. New Biotechnol 32:658–664

    CAS  Article  Google Scholar 

  14. 14.

    Fleet GH (2008) Wine yeasts for the future. FEMS Yeast Res 8(7):979–995

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Forster AC, Church GM (2007) Synthetic biology projects in vitro. Genome Res 17(1):1–6

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD (2015) Complete biosynthesis of opioids in yeast. Science 349:1095–1100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Goerke AR, Loening AM, Gambhir SS, Swartz JR (2008) Cell-free metabolic engineering promotes high-level production of bioactive Gaussia princeps luciferase. Metab Eng 10(3–4):187–200

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Goerke AR, Swartz JR (2008) Development of cell-free protein synthesis platforms for disulfide bonded proteins. Biotechnol Bioeng 99(2):351–367

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Goto M, Akai K, Murakami A, Hashimoto C, Tsuda E, Ueda M, Kawanishi G, Takahashi N, Ishimoto A, Chiba H et al (1988) Production of recombinant human erythropoietin in mammalian cells: host-cell dependency of the biological activity of the cloned glycoprotein. Nat Biotechnol 6(1):67–71

    CAS  Article  Google Scholar 

  20. 20.

    Gottschalk U, Brorson K, Shukla AA (2012) The need for innovation in biomanufacturing. Nat Biotechnol 30(6):489–492

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Guterl J-K, Garbe D, Carsten J, Steffler F, Sommer B, Reiße S, Philipp A, Haack M, Rühmann B, Kettling U et al (2012) Cell-free metabolic engineering—production of chemicals via minimized reaction cascades. ChemSusChem 5:2165–2172

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Henry RJ (1943) The mode of action of sulfonamides. Bacteriol Rev 7(4):175–262

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Hu Q-Y, Berti F, Adamo R (2016) Towards the next generation of biomedicines by site-selective conjugation. Chem Soc Rev 45:1691–1719

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Humphrey AE (1991) Elmer L. Gaden, Jr., father of biochemical engineering. Biotechnol Bioeng 37(11):995–997

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR (2008) An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol 4:57

    Article  Google Scholar 

  26. 26.

    Kanter G, Yang J, Voloshin A, Levy S, Swartz JR, Levy R (2007) Cell-free production of scFv fusion proteins: an efficient approach for personalized lymphoma vaccines. Blood 109(8):3393–3399

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Karim AS, Jewett MC (2016) A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metab Eng 36:116–126

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Kim E-J, Adams M, Wu C-H, Zhang YHP (2016) Exceptionally high rates of biological hydrogen production by biomimetic in vitro synthetic enzymatic pathways. Chem A Eur J 22:16047–16051

  29. 29.

    Kim J-E, Zhang Y-HP (2016) Biosynthesis of d-xylulose 5-phosphate from d-xylose and polyphosphate through a minimized two-enzyme cascade. Biotechnol Bioeng 113:275–282

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Korman TP, Sahachartsiri B, Li D, Vinokur JM, Eisenberg D, Bowie JU (2014) A synthetic biochemistry system for the in vitro production of isoprene from glycolysis intermediates. Protein Sci 25:576–585

    Article  Google Scholar 

  31. 31.

    Kwok R (2010) Five hard truths for synthetic biology. Nature 463:288–290

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Lan EI, Liao JC (2013) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339–349

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14(3):98–105

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev 42:6236–6249

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Mason C, Dunnill P (2007) A brief definition of regenerative medicine. Regen Med 3(1):1–5

    Article  Google Scholar 

  36. 36.

    McGovern PE, Zhang J, Tang J, Zhang Z, Hall GR, Moreau RA, Nuñez A, Butrym ED, Richards MP, C-s Wang et al (2004) Fermented beverages of pre- and proto-historic China. Proc Nat Acad Sci USA 101(51):17593–17598

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Michels P, Rosazza J (2009) The evolution of microbial transformations for industrial applications. SIM News 2009(March/April):36–52

  38. 38.

    Moustafa HMA, Kim E-J, Zhu Z, Wu C-H, Zaghloul TI, Adams MWW, Zhang YHP (2016) Water splitting for high-yield hydrogen production energized by biomass xylooligosaccharides catalyzed by an enzyme cocktail. ChemCatChem. doi:10.1002/cctc.201600772

  39. 39.

    Myung S, Rollin J, You C, Sun F, Chandrayan S, Adams MWW, Zhang Y-HP (2014) In vitro metabolic engineering of hydrogen production at theoretical yield from sucrose. Metab Eng 24(1):70–77

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Myung S, Zhang X-Z, Zhang Y-HP (2011) Ultra-stable phosphoglucose isomerase through immobilization of cellulose-binding module-tagged thermophilic enzyme on low-cost high-capacity cellulosic adsorbent. Biotechnol Prog 27:969–975

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Opgenorth PH, Korman TP, Bowie JU (2014) A synthetic biochemistry molecular purge valve module that maintains redox balance. Nat Commun 5:4113

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Opgenorth PH, Korman TP, Bowie JU (2016) A synthetic biochemistry module for production of bio-based chemicals from glucose. Nat Chem Biol 12:393–395

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12(5):355–367

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Qi P, You C, Zhang YHP (2014) One-pot enzymatic conversion of sucrose to synthetic amylose by using enzyme cascades. ACS Catal 4:1311–1317

    CAS  Article  Google Scholar 

  45. 45.

    Renata H, Wang ZJ, Arnold FH (2015) Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew Chem Int Ed 54(11):3351–3367

    CAS  Article  Google Scholar 

  46. 46.

    Rieckenberg F, Ardao I, Rujananon R, Zeng A-P (2014) Cell-free synthesis of 1,3-propanediol from glycerol with a high yield. Eng Life Sci 14:380–386

    CAS  Article  Google Scholar 

  47. 47.

    Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Rollin JA, Martin del Campo J, Myung S, Sun F, You C, Bakovic A, Castro R, Chandrayan SK, Wu C-H, Adams MWW et al (2015) High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling. Proc Nat Acad Sci USA 112:4964–4969

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Sakai H, Nakagawa T, Tokita Y, Hatazawa T, Ikeda T, Tsujimura S, Kano K (2009) A high-power glucose/oxygen biofuel cell operating under quiescent conditions. Energy Environ Sci 2:133–138

    CAS  Article  Google Scholar 

  50. 50.

    Sano C (2009) History of glutamate production. Am J Clin Nutr 90(3):728S–732S

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Satoh Y, Tajima K, Tannai H, Munekata M (2003) Enzyme-catalyzed poly(3-hydroxybutyrate) synthesis from acetate with CoA recycling and NADPH regeneration in vitro. J Biosci Bioeng 95(4):335–341

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Sattler JH, Fuchs M, Mutti FG, Grischek B, Engel P, Pfeffer J, Woodley JM, Kroutil W (2014) Introducing an In Situ Capping Strategy in Systems Biocatalysis To Access 6-Aminohexanoic acid. Angew Chem Int Ed n/a–n/a

  53. 53.

    Schwab K (2016) The fourth industrial revolution. World Economic Forum, Geneva

  54. 54.

    Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42(15):6223–6235

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A, Louw C, Shen BW, Eiben CB, Tran HM, Noor E et al (2015) Computational protein design enables a novel one-carbon assimilation pathway. Proc Nat Acad Sci USA 112(12):3704–3709

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Siegfried T (2005) In praise of hard questions. Science 309(5731):76–77

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Sochaj AM, Świderska KW, Otlewski J (2015) Current methods for the synthesis of homogeneous antibody–drug conjugates. Biotechnol Adv 33(6, Part 1):775–784

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Stephanopoulos G (2012) Synthetic biology and metabolic engineering. ACS Synth Biol 1:514–525

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Tessaro D, Pollegioni L, Piubelli L, D’Arrigo P, Servi S (2015) Systems biocatalysis: an artificial metabolism for interconversion of functional groups. ACS Catal 5:1604–1608

  62. 62.

    Vasic-Racki D (2006) History of industrial biotransformations—dreams and realities. In: Liese A, Seebald S, Wandrey C (eds) Industrial biotransformations. Wiley-VCH,KGaA, Weinheim, pp 1–37

    Chapter  Google Scholar 

  63. 63.

    Wang Y, Huang W, Sathitsuksanoh N, Zhu Z, Zhang Y-HP (2011) Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways. Chem Biol 18:372–380

    Article  PubMed  Google Scholar 

  64. 64.

    Wang Y, Zhang Y-HP (2009) Cell-free protein synthesis energized by slowly-metabolized maltodextrin. BMC Biotechnol 9:58

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Ye X, Honda K, Sakai T, Okano K, Omasa T, Hirota R, Kuroda A, Ohtake H (2012) Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb Cell Fact 11(1):120

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Ye X, Zhang C, Zhang Y-HP (2012) Engineering a large protein by combined rational and random approaches: stabilizing the Clostridium thermocellum cellobiose phosphorylase. Mol BioSyst 8:1815–1823

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    You C, Chen H, Myung S, Sathitsuksanoh N, Ma H, Zhang X-Z, Li J, Zhang Y-HP (2013) Enzymatic transformation of nonfood biomass to starch. Proc Nat Acad Sci USA 110:7182–7187

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Zhang Y-HP (2010) Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol Bioeng 105:663–677

    CAS  PubMed  Google Scholar 

  69. 69.

    Zhang Y-HP (2011) Simpler is better: high-yield and potential low-cost biofuels production through cell-free synthetic pathway biotransformation (SyPaB). ACS Catal 1:998–1009

    CAS  Article  Google Scholar 

  70. 70.

    Zhang Y-HP (2013) Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy-food-water nexus. Energy Sci Eng 1:27–41

    CAS  Article  Google Scholar 

  71. 71.

    Zhang Y-HP (2015) Production of biofuels and biochemicals by in vitro synthetic biosystems: opportunities and challenges. Biotechnol Adv 33:1467–1483

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Zhang Y-HP, Evans BR, Mielenz JR, Hopkins RC, Adams MWW (2007) High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS One 2(5):e456

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Zhang Y-HP, Himmel M, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    CAS  Article  Google Scholar 

  74. 74.

    Zhang Y-HP, Huang W-D (2012) Constructing the electricity-carbohydrate-hydrogen cycle for a sustainability revolution. Trends Biotechnol 30(6):301–306

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Zhang Y-HP, Sun J-B, Zhong J-J (2010) Biofuel production by in vitro synthetic pathway transformation. Curr Opin Biotechnol 21:663–669

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Zhou W, You C, Ma H, Ma Y, Zhang Y-HP (2016) One-pot biosynthesis of high-concentration α-glucose 1-phosphate from starch by sequential addition of three hyperthermophilic enzymes. J Agric Food Chem 64:1777–1783

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Zhu Z-G, Kin Tam T, Sun F, You C, Zhang Y-HP (2014) A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat Commun 5:3026

    PubMed  Google Scholar 

Download references

Acknowledgements

This paper could not have been written without the support of the Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China and the Biological System Engineering Department, Virginia Polytechnic Institute and State University, Virginia, USA. Also, it is partially supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office under Award Number DE-EE0006968 to YPZ. Also, authors JBS and YHM were partially supported by Tianjin Municipal Science and Technology Commission for the financial supports of 13ZCZDSY04900 and 11ZCZDSY08400. Funding to YPZ for this work was partially supported by the Virginia Agricultural Experiment Station and the Hatch Program of the National Institute of Food and Agriculture, U.S. Department of Agriculture.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yi-Heng Percival Zhang or Yanhe Ma.

Additional information

Tribute to Arny Demain, Industrial Microbiologist Extraordinaire Celebration of the 90th birthday of Arnold Demain.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, YH.P., Sun, J. & Ma, Y. Biomanufacturing: history and perspective. J Ind Microbiol Biotechnol 44, 773–784 (2017). https://doi.org/10.1007/s10295-016-1863-2

Download citation

Keywords

  • Advanced biomanufacturing
  • Biomanufacturing 4.0
  • Bioeconomy
  • In vitro synthetic biosystem
  • Metabolic engineering and synthetic biology
  • Sustainability revolution