Skip to main content
Log in

DasR positively controls monensin production at two-level regulation in Streptomyces cinnamonensis

  • Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The polyether ionophore antibiotic monensin is produced by Streptomyces cinnamonensis and is used as a coccidiostat for chickens and growth-promoting agent for cattle. Monensin biosynthetic gene cluster has been cloned and partially characterized. The GntR-family transcription factor DasR regulates antibiotic production and morphological development in Streptomyces coelicolor and Saccharopolyspora erythraea. In this study, we identified and characterized the two-level regulatory cascade of DasR to monensin production in S. cinnamonensis. Forward and reverse genetics by overexpression and antisense RNA silence of dasR revealed that DasR positively controls monensin production under nutrient-rich condition. Electrophoresis mobility shift assay (EMSA) showed that DasR protein specifically binds to the promoter regions of both pathway-specific regulatory gene monRII and biosynthetic genes monAIX, monE and monT. Semi-quantitative RT-PCR further confirmed that DasR upregulates the transcriptional levels of these genes during monensin fermentation. Subsequently, co-overexpressed dasR with pathway-specific regulatory genes monRI, monRII or monH greatly improved monensin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antón N, Santos-Aberturas J, Mendes MV, Guerra SM, Martín JF, Aparicio JF (2007) PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. Microbiology 153:3174–3183. doi:10.1099/mic.0.2007/009126-0

    Article  CAS  PubMed  Google Scholar 

  2. Baltz RH (2016) Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 43:343–370. doi:10.1007/s10295-015-1682-x

    Article  CAS  PubMed  Google Scholar 

  3. Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215. doi:10.1016/j.mib.2005.02.016

    Article  CAS  PubMed  Google Scholar 

  4. Chapman HD, Jeffers TK, Williams RB (2010) Forty years of monensin for the control of coccidiosis in poultry. Poult Sci 89:1788–1801. doi:10.3382/ps.2010-00931

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y, Smanski MJ, Shen B (2010) Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol 86:19–25. doi:10.1007/s00253-009-2428-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Doumith M, Weingarten P, Wehmeier UF, Salah-Bey K, Benhamou B, Capdevila C, Michel JM, Piepersberg W, Raynal MC (2000) Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea. Mol Genet Genom 264(4):477–485. doi:10.1007/s004380000329

    Article  CAS  Google Scholar 

  7. Dürr C, Schnell HJ, Luzhetskyy A, Murillo R, Weber M, Welzel K, Vente A, Bechthold A (2006) Biosynthesis of the terpene phenalinolactone in Streptomyces sp. Tü6071: analysis of the gene cluster and generation of derivatives. Chem Biol 13(4):365–377. doi:10.1016/j.chembiol.2006.01.011

    Article  CAS  PubMed  Google Scholar 

  8. Gomez C, Olano C, Mendez C, Salas JA (2012) Three pathway-specific regulators control streptolydigin biosynthesis in Streptomyces lydicus. Microbiology 158(10):2504–2514. doi:10.1099/mic.0.061325-0

    Article  CAS  PubMed  Google Scholar 

  9. Gust B, Chandra G, Jakimowicz D, Yuqing T, Bruton CJ, Chater KF (2004) λ Red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv Appl Microbiol 54:107–128. doi:10.1016/S0065-2164(04)54004-2

    Article  CAS  PubMed  Google Scholar 

  10. Harvey BM, Hong H, Jones MA, Hughes-Thomas ZA, Goss RM, Heathcote ML, Bolanos-Garcia VM, Kroutil W, Staunton J, Leadlay PF, Spencer JB (2006) Evidence that a novel thioesterase is responsible for polyketide chain release during biosynthesis of the polyether ionophore monensin. ChemBioChem 7(9):1435–1442. doi:10.1002/cbic.200500474

    Article  CAS  PubMed  Google Scholar 

  11. Hirano S, Tanaka K, Ohnishi Y, Horinouchi S (2008) Conditionally positive effect of the TetR-family transcriptional regulator AtrA on streptomycin production by Streptomyces griseus. Microbiology 154(3):905–914. doi:10.1099/mic.0.2007/014381-0

    Article  CAS  PubMed  Google Scholar 

  12. Huang H, Zheng GS, Jiang WH, Hu HF, Lu YH (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47(4):231–243. doi:10.1093/abbs/gmv007

    Article  PubMed  Google Scholar 

  13. Hüttel W, Spencer JB, Leadlay PF (2014) Intermediates in monensin biosynthesis: a late step in biosynthesis of the polyether ionophore monensin is crucial for the integrity of cation binding. Beilstein J Org Chem 10(1):361–368. doi:10.3762/bjoc.10.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ketola K, Vainio P, Fey V, Kallioniemi O, Iljin K (2010) Monensin is a potent inducer of oxidative stress and inhibitor of androgen signaling leading to apoptosis in prostate cancer cells. Mol Cancer Ther 9(12):3157–3185. doi:10.1158/1535-7163.MCT-10-0368

    Article  CAS  Google Scholar 

  15. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  16. Kitani S, Ikeda H, Sakamoto T, Noguchi S, Nihira T (2009) Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis. Appl Microbiol Biotechnol 82:1089–1096. doi:10.1007/s00253-008-1850-2

    Article  CAS  PubMed  Google Scholar 

  17. Leadlay PF, Staunton J, Oliynyk M, Bisang C, Cortes J, Frost E, Hughes-Thomas ZA, Jones MA, Kendrew SG, Lester JB, Long PF, McArthur HA, McCormick EL, Oliynyk Z, Stark CB, Wilkinson CJ (2001) Engineering of complex polyketide biosynthesis-insights from sequencing of the monensin biosynthetic gene cluster. J Ind Microbiol Biotechnol 27:360–367. doi:10.1038/sj.jim.7000204

    Article  CAS  PubMed  Google Scholar 

  18. Li L, Zhao Y, Ruan L, Yang S, Ge M, Jiang W, Lu Y (2015) A stepwise increase in pristinamycin II biosynthesis by Streptomyces pristinaespiralis through combinatorial metabolic engineering. Metab Eng 29:12–25. doi:10.1016/j.ymben.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  19. Liao CH, Xu Y, Rigali S, Ye BC (2015) DasR is a pleiotropic regulator required for antibiotic production, pigment biosynthesis, and morphological development in Saccharopolyspora erythraea. Appl Microbiol Biotechnol 99:10215–10224. doi:10.1007/s00253-015-6892-7

    Article  CAS  PubMed  Google Scholar 

  20. Liao CH, Yao L, Ye BC (2014) Three genes encoding citrate synthases in Saccharopolyspora erythraea are regulated by the global nutrient-sensing regulators GlnR, DasR, and CRP. Mol Microbiol 94(5):1065–1084. doi:10.1111/mmi.12818

    Article  CAS  Google Scholar 

  21. Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77(1):112–143. doi:10.1128/MMBR.00054-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nazari B, Kobayashi M, Saito A, Hassaninasab A, Miyashita K, Fujii T (2013) Chitin-induced gene expression in secondary metabolic pathways of Streptomyces coelicolor A3(2) grown in soil. Appl Environ Microbiol 79(2):707–713. doi:10.1128/AEM.02217-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oliynyk M, Stark CBW, Bhatt A, Jones MA, Hughes-Thomas ZA, Wilkinson C, Oliynyk Z, Demydchuk Y, Staunton J, Leadlay PF (2003) Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization. Mol Microbiol 49(5):1179–1190. doi:10.1046/j.1365-2958.2003.03571.x

    Article  CAS  PubMed  Google Scholar 

  24. Pang AP, Du L, Lin CY, Qiao J, Zhao GR (2015) Co-overexpression of lmbW and metK led to increased lincomycin A production and decreased byproduct lincomycin B content in an industrial strain of Streptomyces lincolnensis. J Appl Microbiol 119(4):1064–1074. doi:10.1111/jam.12919

    Article  CAS  PubMed  Google Scholar 

  25. Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69(2):326–356. doi:10.1128/MMBR.69.2.326-356.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rigali S, Nothaft H, Noens EEE, Schlicht M, Colson S, Müller M, Joris B, Koerten HK, Hopwood DA, Titgemeyer F, van Wezel GP (2006) The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 61:1237–1251. doi:10.1111/j.1365-2958.2006.05319.x

    Article  CAS  PubMed  Google Scholar 

  27. Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9(7):670–675. doi:10.1038/embor.2008.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  29. Sato K, Minami A, Ose T, Oguri H, Oikawa H (2011) Remarkable synergistic effect between MonBI and MonBII on epoxide opening reaction in ionophore polyether monensin biosynthesis. Tetrahedron Lett 52(41):5277–5280. doi:10.1016/j.tetlet.2011.07.145

    Article  CAS  Google Scholar 

  30. Seo JW, Ohnishi Y, Hirata A, Horinouchi S (2002) ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. J Bacteriol 184(1):91–103. doi:10.1128/JB.184.1.91-103.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stratigopoulos G, Bate N, Cundliffe E (2004) Positive control of tylosin biosynthesis: pivotal role of TylR. Mol Microbiol 54:1326–1334. doi:10.1111/j.1365-2958.2004.04347.x

    Article  CAS  PubMed  Google Scholar 

  32. Sugiyama M (2015) Structural biological study of self-resistance determinants in antibiotic-producing actinomycetes. J Antibiot (Tokyo) 68:543–550. doi:10.1038/ja.2015.32

    Article  CAS  Google Scholar 

  33. Świątek-Połatyńska MA, Bucca G, Laing E, Gubbens J, Titgemeyer F, Smith CP, Rigali S, van Wezel GP (2015) Genome-wide analysis of in vivo binding of the master regulator DasR in Streptomyces coelicolor identifies novel non-canonical targets. PLoS One 10(4):e0122479. doi:10.1371/journal.pone.0122479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takano E, Kinoshita H, Mersinias V, Bucca G, Hotchkiss G, Nihira T, Smith CP, Bibb M, Wohlleben W, Chater K (2005) A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol 56:465–479. doi:10.1111/j.1365-2958.2005.04543.x

    Article  CAS  PubMed  Google Scholar 

  35. Tenconi E, Urem M, Świątek-Połatyńska MA, Titgemeyer F, Muller YA, van Wezel GP, Rigali S (2015) Multiple allosteric effectors control the affinity of DasR for its target sites. Biochem Biophys Res Commun 464(1):324–329. doi:10.1016/j.bbrc.2015.06.152

    Article  CAS  PubMed  Google Scholar 

  36. Tumova L, Pombinho AR, Vojtechova M, Stancikova J, Gradl D, Krausova M, Sloncova E, Horazna M, Kriz V, Machonova O, Jindrich J, Zdrahal Z, Bartunek P, Korinek V (2014) Monensin inhibits canonical Wnt signaling in human colorectal cancer cells and suppresses tumor growth in multiple intestinal neoplasia mice. Mol Cancer Ther 13(4):812–822. doi:10.1158/1535-7163.MCT-13-0625

    Article  CAS  PubMed  Google Scholar 

  37. Uguru GC, Mondhe M, Goh S, Hesketh A, Bibb MJ, Good L, Stach JE (2013) Synthetic RNA silencing of actinorhodin biosynthesis in A3(2). PLoS One 8(6):e67509. doi:10.1371/journal.pone.0067509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Uguru GC, Stephens KE, Stead JA, Towle JE, Baumberg S, McDowall KJ (2005) Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol Microbiol 58:131–150. doi:10.1111/j.1365-2958.2005.04817.x

    Article  CAS  PubMed  Google Scholar 

  39. Wilkinson CJ, Hughes-Thomas ZA, Martin CJ, Böhm I, Mironenko T, Deacon M, Wheatcroft M, Wirtz G, Staunton J, Leadlay PF (2002) Increasing the efficiency of heterologous promoters in actinomycetes. J Mol Microbiol Biotechnol 4(4):417–426

    CAS  PubMed  Google Scholar 

  40. Yu Q, Du A, Liu T, Deng Z, He X (2012) The biosynthesis of the polyether antibiotic nanchangmycin is controlled by two pathway-specific transcriptional activators. Arch Microbiol 194:415–426. doi:10.1007/s00203-011-0768-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31370092) and the National Basic Research Program of China (2012CB721105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Rong Zhao.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 307 kb)

Supplementary material 2 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lin, CY., Li, XM. et al. DasR positively controls monensin production at two-level regulation in Streptomyces cinnamonensis . J Ind Microbiol Biotechnol 43, 1681–1692 (2016). https://doi.org/10.1007/s10295-016-1845-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1845-4

Keyword

Navigation