Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15:1351–1357. doi:10.1038/nbt1297-1351
CAS
Article
PubMed
Google Scholar
Le Borgne S (2012) Genetic engineering of industrial strains of Saccharomyces cerevisiae. Methods Mol Biol Clifton NJ 824:451–465. doi:10.1007/978-1-61779-433-9_24
Article
Google Scholar
Borodina I, Jensen BM, Søndergaard I, Poulsen LK, Borodina I, Jensen BM, Søndergaard I, Poulsen LK (2010) Display of wasp venom allergens on the cell surface of Saccharomyces cerevisiae. Microb Cell Fact. doi:10.1186/1475-2859-9-74
PubMed Central
PubMed
Google Scholar
Borodina I, Nielsen J (2014) Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J 9:609–620. doi:10.1002/biot.201300445
CAS
Article
PubMed
Google Scholar
Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75:2304–2311. doi:10.1128/AEM.02522-08
PubMed Central
CAS
Article
PubMed
Google Scholar
Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Abt TD, Bonini BM, Liden G, Dumortier F, Verplaetse A, Boles E, Thevelein JM (2013) Development of a d-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6:89. doi:10.1186/1754-6834-6-89
PubMed Central
CAS
Article
PubMed
Google Scholar
Demeke MM, Foulquié-Moreno MR, Dumortier F, Thevelein JM (2015) Rapid evolution of recombinant Saccharomyces cerevisiae for Xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genet 11:e1005010. doi:10.1371/journal.pgen.1005010
PubMed Central
Article
PubMed
Google Scholar
Diao L, Liu Y, Qian F, Yang J, Jiang Y, Yang S (2013) Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnol 13:110. doi:10.1186/1472-6750-13-110
PubMed Central
Article
PubMed
Google Scholar
Fang F, Salmon K, Shen MWY, Aeling KA, Ito E, Irwin B, Tran UPC, Hatfield GW, Da Silva NA, Sandmeyer S (2011) A vector set for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast Chichester Engl 28:123–136. doi:10.1002/yea.1824
CAS
Article
Google Scholar
Flagfeldt DB, Siewers V, Huang L, Nielsen J (2009) Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast Chichester Engl 26:545–551. doi:10.1002/yea.1705
Article
Google Scholar
Futcher AB, Cox BS (1983) Maintenance of the 2 microns circle plasmid in populations of Saccharomyces cerevisiae. J Bacteriol 154:612–622
PubMed Central
CAS
PubMed
Google Scholar
Gietz RD, Woods RA (2006) Yeast transformation by the LiAc/SS Carrier DNA/PEG method. Methods Mol Biol Clifton NJ 313:107–120. doi:10.1385/1-59259-958-3:107
CAS
Google Scholar
Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524
PubMed Central
CAS
Article
PubMed
Google Scholar
Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:147–177. doi:10.1007/10_2007_062
PubMed
Google Scholar
Ishii J, Kondo T, Makino H, Ogura A, Matsuda F, Kondo A (2014) Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res 14:399–411. doi:10.1111/1567-1364.12138
CAS
Article
PubMed
Google Scholar
Jakočiu̅nas T, Rajkumar AS, Zhang J, Arsovska D, Rodriguez A, Jendresen CB, Skjødt ML, Nielsen AT, Borodina I, Jensen MK, Keasling JD (2015) CasEMBLR: Cas9-facilitated Multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae. ACS Synth Biol. doi:10.1021/acssynbio.5b00007
PubMed
Google Scholar
Jensen NB, Strucko T, Kildegaard KR, David F, Maury J, Mortensen UH, Forster J, Nielsen J, Borodina I (2014) EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res 14:238–248. doi:10.1111/1567-1364.12118
PubMed Central
CAS
Article
PubMed
Google Scholar
Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF (2006) The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 93:665–673. doi:10.1002/bit.20737
CAS
Article
PubMed
Google Scholar
Jin Y-S, Alper H, Yang Y-T, Stephanopoulos G (2005) Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 71:8249–8256. doi:10.1128/AEM.71.12.8249-8256.2005
PubMed Central
CAS
Article
PubMed
Google Scholar
Katz M, Durhuus T, Smits HP, Förster J (2011) Production of metabolites. Patent WO2011147818
Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409. doi:10.1016/j.femsyr.2004.09.010
CAS
Article
PubMed
Google Scholar
Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24. doi:10.1016/S0168-1656(97)00073-4
CAS
Article
PubMed
Google Scholar
Leite FCB, Dos Anjos RSG, Basilio ACM, Leal GFC, Simões DA, de Morais MA (2013) Construction of integrative plasmids suitable for genetic modification of industrial strains of Saccharomyces cerevisiae. Plasmid 69:114–117. doi:10.1016/j.plasmid.2012.09.004
CAS
Article
PubMed
Google Scholar
Li M, Borodina I (2014) Application of synthetic biology for production of chemicals in yeast S. cerevisiae. FEMS. Yeast. doi:10.1111/1567-1364.12213
PubMed
Google Scholar
Mapelli V (2014) Yeast metabolic engineering. Springer, New York
Book
Google Scholar
Mikkelsen MD, Buron LD, Salomonsen B, Olsen CE, Hansen BG, Mortensen UH, Halkier BA (2012) Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab Eng 14:104–111. doi:10.1016/j.ymben.2012.01.006
CAS
Article
PubMed
Google Scholar
Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev MMBR 72:379–412. doi:10.1128/MMBR.00025-07
CAS
Article
PubMed
Google Scholar
Nielsen J (2013) Production of biopharmaceutical proteins by yeast. Bioengineered 4:207–211. doi:10.4161/bioe.22856
PubMed Central
Article
PubMed
Google Scholar
Nielsen J, Larsson C, van Maris A, Pronk J (2013) Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol 24:398–404. doi:10.1016/j.copbio.2013.03.023
CAS
Article
PubMed
Google Scholar
Nørholm MH (2010) A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol 10:21. doi:10.1186/1472-6750-10-21
PubMed Central
Article
PubMed
Google Scholar
Nour-Eldin HH, Geu-Flores F, Halkier BA (2010) USER cloning and USER fusion: the ideal cloning techniques for small and big laboratories. Methods Mol Biol Clifton NJ 643:185–200. doi:10.1007/978-1-60761-723-5_13
CAS
Article
Google Scholar
Paes BG, Almeida JR (2014) Genetic improvement of microorganisms for applications in biorefineries. Chem Biol Technol Agric 1:21. doi:10.1186/s40538-014-0021-1
Article
Google Scholar
Parreiras LS, Breuer RJ, Avanasi Narasimhan R, Higbee AJ, La Reau A, Tremaine M, Qin L, Willis LB, Bice BD, Bonfert BL, Pinhancos RC, Balloon AJ, Uppugundla N, Liu T, Li C, Tanjore D, Ong IM, Li H, Pohlmann EL, Serate J, Withers ST, Simmons BA, Hodge DB, Westphall MS, Coon JJ, Dale BE, Balan V, Keating DH, Zhang Y, Landick R, Gasch AP, Sato TK (2014) Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. PLoS One 9:e107499. doi:10.1371/journal.pone.0107499
PubMed Central
Article
PubMed
Google Scholar
Partow S, Siewers V, Bjørn S, Nielsen J, Maury J (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast Chichester Engl 27:955–964. doi:10.1002/yea.1806
CAS
Article
Google Scholar
Pereira FB, Guimarães PMR, Teixeira JA, Domingues L (2010) Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes. Biotechnol Lett 32:1655–1661. doi:10.1007/s10529-010-0330-9
CAS
Article
PubMed
Google Scholar
Reid RJD, Sunjevaric I, Keddache M, Rothstein R, Kedacche M (2002) Efficient PCR-based gene disruption in Saccharomyces strains using intergenic primers. Yeast Chichester Engl 19:319–328. doi:10.1002/yea.817
CAS
Article
Google Scholar
Ryan OW, Skerker JM, Maurer MJ, Li X, Tsai JC, Poddar S, Lee ME, DeLoache W, Dueber JE, Arkin AP, Cate JH (2014) Selection of chromosomal DNA libraries using a multiplex CRISPR system. ELife. doi:10.7554/eLife.03703
Google Scholar
Sadowski I, Su T-C, Parent J (2007) Disintegrator vectors for single-copy yeast chromosomal integration. Yeast Chichester Engl 24:447–455. doi:10.1002/yea.1469
CAS
Article
Google Scholar
Sakai A, Shimizu Y, Hishinuma F (1990) Integration of heterologous genes into the chromosome of Saccharomyces cerevisiae using a delta sequence of yeast retrotransposon Ty. Appl Microbiol Biotechnol 33:302–306. doi:10.1007/BF00164526
CAS
Article
PubMed
Google Scholar
Sauer B (1994) Recycling selectable markers in yeast. Biotechniques 16:1086–1088
CAS
PubMed
Google Scholar
Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16. doi:10.1093/nar/gkn991
PubMed Central
Article
PubMed
Google Scholar
Da Silva NA, Srikrishnan S (2012) Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res 12:197–214. doi:10.1111/j.1567-1364.2011.00769.x
Article
PubMed
Google Scholar
Solis-Escalante D, Kuijpers NGA, Bongaerts N, Bolat I, Bosman L, Pronk JT, Daran J-M, Daran-Lapujade P (2013) amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 13:126–139. doi:10.1111/1567-1364.12024
PubMed Central
CAS
Article
PubMed
Google Scholar
Spencer JFT, Spencer DM (1983) Genetic improvement of industrial yeasts. Annu Rev Microbiol 37:121–142. doi:10.1146/annurev.mi.37.100183.001005
CAS
Article
PubMed
Google Scholar
Stearns T, Ma H, Botstein D (1990) Manipulating yeast genome using plasmid vectors. Methods Enzymol 185:280–297
CAS
Article
PubMed
Google Scholar
Stovicek V, Borodina I, Forster J (2015) CRISPR—Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab Eng Commun 2:13–22. doi:10.1016/j.meteno.2015.03.001
Article
Google Scholar
Taxis C, Knop M (2006) System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques 40:73–78
CAS
Article
PubMed
Google Scholar
Verwaal R, Wang J, Meijnen J-P, Visser H, Sandmann G, van den Berg JA, van Ooyen AJJ (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from. Appl Environ Microbiol 73:4342–4350. doi:10.1128/AEM.02759-06
PubMed Central
CAS
Article
PubMed
Google Scholar
Vickers CE, Bydder SF, Zhou Y, Nielsen LK (2013) Dual gene expression cassette vectors with antibiotic selection markers for engineering in Saccharomyces cerevisiae. Microb Cell Fact 12:96. doi:10.1186/1475-2859-12-96
PubMed Central
Article
PubMed
Google Scholar
Vorachek-Warren MK, McCusker JH (2004) DsdA (d-serine deaminase): a new heterologous MX cassette for gene disruption and selection in Saccharomyces cerevisiae. Yeast Chichester Engl 21:163–171. doi:10.1002/yea.1074
CAS
Article
Google Scholar
Wang X, Wang Z, Da Silva NA (1996) G418 Selection and stability of cloned genes integrated at chromosomal delta sequences of Saccharomyces cerevisiae. Biotechnol Bioeng 49:45–51. doi:10.1002/(SICI)1097-0290(19960105)49:1<45:AID-BIT6>3.0.CO;2-T
CAS
Article
PubMed
Google Scholar