Skip to main content
Log in

Structural and functional analysis of a low-temperature-active alkaline esterase from South China Sea marine sediment microbial metagenomic library

  • Biocatalysis
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A low-temperature-active alkaline esterase, Est12, from a marine sediment metagenomic fosmid library was identified. Est12 prefers short- and middle-chain p-nitrophenol esters as substrate with optimum temperature and pH value of 50 °C and 9.0, respectively, and nearly 50 % of maximum activity retained at 5 °C. The hydrolysis activity of Est12 was stable at 40 °C. Ca2+ especially activated the activity of Est12 to about 151 % of the control. DEPC and PMSF inhibited the activity of Est12 to 34 and 25 %, respectively. In addition, Est12 was more tolerable to methanol compared to other organic solvents tested. The crystal structure of Est12 at 1.39 Å resolution showed that the cap domain which is composed of an α-helix and a flexible region resulted in a relatively wide spectrum of substrate, with p-nitrophenol caproate as the preferred one. Furthermore, the flexible cap domain and the high percentage of Gly, Ser, and Met may play important roles in the adaptation of Est12 to low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D 66:213–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Mol Biol R 59:143–169

    CAS  Google Scholar 

  3. Arpigny J, Jaeger K (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  5. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    Article  CAS  PubMed  Google Scholar 

  6. Chu X, He H, Guo C, Sun B (2008) Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl Microbiol Biotechnol 80:615–625

    Article  CAS  PubMed  Google Scholar 

  7. Cottrell MT, Moore JA, Kirchman DL (1999) Chitinases from uncultured marine microorganisms. Appl Environ Microbiol 65:2553–2557

    PubMed Central  CAS  PubMed  Google Scholar 

  8. de Pascale D, Cusano AM, Autore F, Parrilli E, di Prisco G, Marino G, Tutino ML (2008) The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles 12:311–323

    Article  CAS  PubMed  Google Scholar 

  9. De Santi C, Tedesco P, Ambrosino L, Altermark B, Willassen NP, de Pascale D (2014) A new alkaliphilic cold-active esterase from the psychrophilic marine bacterium Rhodococcus sp.: functional and structural studies and biotechnological potential. Appl Biochem Biotechnol 172:3054–3068

    Article  PubMed  Google Scholar 

  10. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. DeSantis G, Zhu Z, Greenberg WA, Wong K, Chaplin J, Hanson SR, Farwell B, Nicholson LW, Rand CL, Weiner DP (2002) An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. J Am Chem Soc 124:9024–9025

    Article  CAS  PubMed  Google Scholar 

  12. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of coot. Acta Crystallogr D 66:486–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Fang Z, Li J, Wang Q, Fang W, Peng H, Zhang X, Xiao Y (2014) A novel esterase from a marine metagenomic library exhibiting salt tolerance ability. J Microbiol Biotechnol 24:771–780

    CAS  PubMed  Google Scholar 

  14. Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  CAS  PubMed  Google Scholar 

  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  16. Ferrer M, Martínez-Abarca F, Golyshin PN (2005) Mining genomes and ‘metagenomes’ for novel catalysts. Curr Opin Biotechnol 16:588–593

    Article  CAS  PubMed  Google Scholar 

  17. Fu C, Hu Y, Xie F, Guo H, Ashforth EJ, Polyak SW, Zhu B, Zhang L (2011) Molecular cloning and characterization of a new cold-active esterase from a deep-sea metagenomic library. Appl Microbiol Biotechnol 90:961–970

    Article  CAS  PubMed  Google Scholar 

  18. Fu J, Leiros HK, de Pascale D, Johnson KA, Blencke HM, Landfald B (2013) Functional and structural studies of a novel cold-adapted esterase from an Arctic intertidal metagenomic library. Appl Microbiol Biotechnol 97:3965–3978

    Article  CAS  PubMed  Google Scholar 

  19. Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42

    Article  CAS  PubMed  Google Scholar 

  20. Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Article  CAS  PubMed  Google Scholar 

  21. Hårdeman F, Sjöling S (2007) Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiol Ecol 59:524–534

    Article  PubMed  Google Scholar 

  22. Hanson SR, Best MD, Wong CH (2004) Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed 43:5736–5763

    Article  CAS  Google Scholar 

  23. Henne A, Daniel R, Schmitz RA, Gottschalk G (1999) Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl Environ Microbiol 65:3901–3907

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Henne A, Schmitz RA, Bömeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–3116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38:W545–W549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hu Y, Fu C, Huang Y, Yin Y, Cheng G, Lei F, Lu N, Li J, Ashforth EJ, Zhang L, Zhu B (2010) Novel lipolytic genes from the microbial metagenomic library of the South China Sea marine sediment. FEMS Microbiol Ecol 72:228–237

    Article  CAS  PubMed  Google Scholar 

  27. Hu Y, Fu C, Yin Y, Cheng G, Lei F, Yang X, Li J, Ashforth EJ, Zhang L, Zhu B (2010) Construction and preliminary analysis of a deep-sea sediment metagenomic fosmid library from Qiongdongnan Basin, South China Sea. Mar Biotechnol (NY) 12:719–727

    Article  CAS  Google Scholar 

  28. Jaeger K-E, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  PubMed  Google Scholar 

  29. Jeon JH, Kim JT, Lee HS, Kim SJ, Kang SG, Choi SH, Lee JH (2011) Novel lipolytic enzymes identified from metagenomic library of deep-sea sediment. Evid-Based Compl Alt 2011:271419

    Google Scholar 

  30. Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  PubMed  Google Scholar 

  31. Kennedy J, Marchesi JR, Dobson AD (2008) Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Fact 7:27

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kim E-Y, Oh K-H, Lee M-H, Kang C-H, Oh T-K, Yoon J-H (2009) Novel cold-adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. Appl Environ Microbiol 75:257–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kim MH, Kang BS, Kim S, Kim K-J, Lee CH, Oh B-C, Park S-C, Oh T-K (2008) The crystal structure of the estA protein, a virulence factor from Streptococcus pneumoniae. Proteins 70:578–583

    Article  CAS  PubMed  Google Scholar 

  34. López-López O, Cerdán M, Gonzalez-Siso M (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci 15:445–455

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lee M-H, Lee C-H, Oh T-K, Song JK, Yoon J-H (2006) Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl Environ Microbiol 72:7406–7409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Lee S-W, Won K, Lim HK, Kim J-C, Choi GJ, Cho KY (2004) Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl Microbiol Biotechnol 65:720–726

    Article  CAS  PubMed  Google Scholar 

  37. Lemak S, Tchigvintsev A, Petit P, Flick R, Singer AU, Brown G, Evdokimova E, Egorova O, Gonzalez CF, Chernikova TN, Yakimov MM, Kube M, Reinhardt R, Golyshin PN, Savchenko A, Yakunin AF (2012) Structure and activity of the cold-active and anion-activated carboxyl esterase OLEI01171 from the oil-degrading marine bacterium Oleispira antarctica. Biochem J 445:193–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Levisson M, van der Oost J, Kengen SW (2007) Characterization and structural modeling of a new type of thermostable esterase from Thermotoga maritima. FEBS J 274:2832–2842

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Qin L (2005) Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol 23:539–543

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Zhang Y, Cao X, Xue S (2013) Cloning, purification, crystallization and preliminary X-ray crystallographic analysis of MCAT from Synechocystis sp PCC 6803. Acta Crystallogr F 69:1256–1259

    Article  CAS  Google Scholar 

  41. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516

    Article  CAS  PubMed  Google Scholar 

  42. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Nam KH, Kim MY, Kim SJ, Priyadarshi A, Lee WH, Hwang KY (2009) Structural and functional analysis of a novel EstE5 belonging to the subfamily of hormone-sensitive lipase. Biochem Biophys Res Commun 379:553–556

    Article  CAS  PubMed  Google Scholar 

  44. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Charles W. Carter, Jr. (Ed.), Methods in enzymology, edn. Academic Press, Waltham pp 307–326

  45. Park H-J, Jeon JH, Kang SG, Lee J-H, Lee S-A, Kim H-K (2007) Functional expression and refolding of new alkaline esterase, EM2L8 from deep-sea sediment metagenome. Protein Expres Purif 52:340–347

    Article  CAS  Google Scholar 

  46. Peng Q, Zhang X, Shang M, Wang X, Wang G, Li B, Guan G, Li Y, Wang Y (2011) A novel esterase gene cloned from a metagenomic library from neritic sediments of the South China Sea. Microb Cell Fact 10:95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Ranjan R, Grover A, Kapardar RK, Sharma R (2005) Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem Biophys Res Commun 335:57–65

    Article  CAS  PubMed  Google Scholar 

  48. Rashid N, Shimada Y, Ezaki S, Atomi H, Imanaka T (2001) Low-temperature lipase from Psychrotrophic Pseudomonas sp. strain KB700A. Appl Environ Microbiol 67:4064–4069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Santarossa G, Lafranconi PG, Alquati C, DeGioia L, Alberghina L, Fantucci P, Lotti M (2005) Mutations in the “lid” region affect chain length specificity and thermostability of a Pseudomonas fragi lipase. FEBS Lett 579:2383–2386

    Article  CAS  PubMed  Google Scholar 

  50. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  CAS  PubMed  Google Scholar 

  51. Simons J-WF, van Kampen MD, Ubarretxena-Belandia I, Cox RC, Alves dos Santos CM, Egmond MR, Verheij HM (1999) Identification of a calcium binding site in Staphylococcus hyicus lipase: generation of calcium-independent variants. Biochemistry 38:2–10

    Article  CAS  PubMed  Google Scholar 

  52. Takami H, Kobata K, Nagahama T, Kobayashi H, Inoue A, Horikoshi K (1999) Biodiversity in deep-sea sites located near the south part of Japan. Extremophiles 3:97–102

    Article  CAS  PubMed  Google Scholar 

  53. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  54. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Verger R (1997) ‘Interfacial activation’of lipases: facts and artifacts. Trends Biotechnol 15:32–38

    Article  CAS  Google Scholar 

  56. Voget S, Steele H, Streit W (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26–36

    Article  CAS  PubMed  Google Scholar 

  57. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D 67:235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Yun J, Kang S, Park S, Yoon H, Kim M-J, Heu S, Ryu S (2004) Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl Environ Microbiol 70:7229–7235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Zhang S, Wu G, Liu Z, Shao Z, Liu Z (2014) Characterization of EstB, a novel cold-active and organic solvent-tolerant esterase from marine microorganism Alcanivorax dieselolei B-5 (T). Extremophiles 18:251–259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (2007AA09Z443 and 2007AA021301), Knowledge Innovation Project of The Chinese Academy of Sciences (KSCX2-YW-G-022), the National Key Basic Research Program of China ‘973 Program’ (2011CBA00803), and the Hundred Talents Program of the Chinese Academy of Sciences (Grant No. A1097). We cordially thank the staff of beamline BL17U1 at the Shanghai Synchrotron Radiation Facility, People’s Republic of China for assistance in synchrotron X-ray data collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoli Zhu or Song Xue.

Additional information

Y. Hu and Y. Liu are contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 24 kb)

Supplementary material 2 (PDF 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Liu, Y., Li, J. et al. Structural and functional analysis of a low-temperature-active alkaline esterase from South China Sea marine sediment microbial metagenomic library. J Ind Microbiol Biotechnol 42, 1449–1461 (2015). https://doi.org/10.1007/s10295-015-1653-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1653-2

Keywords

Navigation