Skip to main content
Log in

Metabolic and bioprocess engineering of the yeast Candida famata for FAD production

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Flavins in the form of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) play an important role in metabolism as cofactors for oxidoreductases and other enzymes. Flavin nucleotides have applications in the food industry and medicine; FAD supplements have been efficiently used for treatment of some inheritable diseases. FAD is produced biotechnologically; however, this compound is much more expensive than riboflavin. Flavinogenic yeast Candida famata synthesizes FAD from FMN and ATP in the reaction catalyzed by FAD synthetase, a product of the FAD1 gene. Expression of FAD1 from the strong constitutive promoter TEF1 resulted in 7- to 15-fold increase in FAD synthetase activity, FAD overproduction, and secretion to the culture medium. The effectiveness of FAD production under different growth conditions by one of these recombinant strains, C. famata T-FD-FM 27, was evaluated. First, the two-level Plackett–Burman design was performed to screen medium components that significantly influence FAD production. Second, central composite design was adopted to investigate the optimum value of the selected factors for achieving maximum FAD yield. FAD production varied most significantly in response to concentrations of adenine, KH2PO4, glycine, and (NH4)2SO4. Implementation of these optimization strategies resulted in 65-fold increase in FAD production when compared to the non-optimized control conditions. Recombinant strain that has been cultivated for 40 h under optimized conditions achieved a FAD accumulation of 451 mg/l. So, for the first time yeast strains overproducing FAD were obtained, and the growth media composition for maximum production of this nucleotide was designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbas C, Sibirny A (2011) Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75:321–360. doi:10.1128/MMBR.00030-10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Brooke AG, Dijkhuizen L, Harder W (1986) Regulation of flavin biosynthesis in the methylotrophic yeast Hansenula polymorpha. Arch Microbiol 145(2):162–170

    Article  Google Scholar 

  3. Cao G, Ren N, Wang A, Guo W, Yao J, Feng Y, Zhao Q (2010) Statistical optimization of culture condition for enhanced hydrogen production by Thermoanaerobacterium thermo-saccharolyticum W16. Bioresour Technol 101(6):2053–2058. doi:10.1016/j.biortech.2009.11.031

    Article  PubMed  CAS  Google Scholar 

  4. De Colibus L, Mattevi A (2006) New frontiers in structural flavoenzymology. Curr Opin Struct Biol 16(6):722–728. doi:10.1016/j.sbi.2006.10.003

    Article  PubMed  Google Scholar 

  5. Dmytruk KV, Voronovsky AY, Sibirny AA (2006) Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments. Curr Genet 50(3):183–191. doi:10.1007/s00294-006-0083-0

    Article  PubMed  CAS  Google Scholar 

  6. Dmytruk KV, Yatsyshyn VY, Sybirna NO, Fedorovych DV, Sibirny AA (2011) Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production. Metab Eng 13(1):82–88. doi:10.1016/j.ymben.2010.10.005

    Article  PubMed  CAS  Google Scholar 

  7. Exinger F, Lacroute F (1992) 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae. Curr Genet 22(1):9–11. doi:10.1007/BF00351735

    Article  PubMed  CAS  Google Scholar 

  8. Faeder EJ, Siegel LM (1973) A rapid micromethod for determination of FMN and FAD in mixtures. Anal Biochem 53(1):332–336. doi:10.1016/0003-2697(73)90442-9

    Article  PubMed  CAS  Google Scholar 

  9. Frago S, Velázquez-Campoy A, Medina M (2009) The puzzle of ligand binding to Corynebacterium ammoniagenes FAD synthetase. J Biol Chem 284(11):6610–6619. doi:10.1074/jbc.M808142200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Gonzalez-Cabo P, Ros S, Palau F (2010) Flavin adenine dinucleotide rescues the phenotype of frataxin deficiency. PLoS One 5(1):e8872. doi:10.1371/journal.pone.0008872

    Article  PubMed Central  PubMed  Google Scholar 

  11. Haaland PD (1990) Experimental design in biotechnology. Elsevier, New York

    Google Scholar 

  12. Hagihara T, Fujio T, Aisaka K (1995) Cloning of FAD synthetase gene from Corynebacterium ammoniagenes and its application to FAD and FMN production. Appl Microbiol Biotechnol 42(5):724–729

    Article  PubMed  CAS  Google Scholar 

  13. Huang YF, Liu SY, Yen CL, Yang PW, Shieh CC (2009) Thapsigargin and flavin adenine dinucleotide ex vivo treatment rescues trafficking-defective gp91phox in chronic granulomatous disease leukocytes. Free Radic Biol Med 47(7):932–940. doi:10.1016/j.freeradbiomed.2009.06.037

    Article  PubMed  CAS  Google Scholar 

  14. Ishchuk OP, Dmytruk KV, Rohulya OV, Voronovsky AY, Abbas CA, Sibirny AA (2008) Development of a promoter assay system for the flavinogenic yeast Candida famata based on the Kluyveromyces lactis β-galactosidase LAC4 reporter gene. Enzym Microb Technol 42(3):208–215. doi:10.1016/j.enzmictec.2007.09.008

    Article  CAS  Google Scholar 

  15. Ishchuk OP, IatsyshynViu, Dmytruk KV, Voronovs’kyĭ Aia, Fedorovych DV, Sybirnyĭ AA (2006) Construction of the flavinogenic yeast Candida famata strains with high riboflavin kinase activity using gene engineering. Ukr Biokhim Zh 78(5):63–69 (Article in Ukrainian)

    PubMed  CAS  Google Scholar 

  16. Kalingan AE, Liao C-M (2002) Influence of type and concentration of flavinogenic factors on production of riboflavin by Eremothecium ashbyii NRRL 1363. Bioresour Technol 82(3):219–224. doi:10.1016/S0960-8524(01)00194-8

    Article  PubMed  CAS  Google Scholar 

  17. Kashchenko VE, Shavlovskiĭ GM (1976) Purification and properties of the riboflavin kinase of the yeast Pichia guilliermondii. Biokhimiia 41(2):376–383 Article in Russian

    PubMed  CAS  Google Scholar 

  18. Kitatsuji K, Ishino S, Teshiba S, Arimoto M (1996) Method of producing flavine nucleotides. US Patent 5,514,574

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  20. Massey V (2000) The chemical and biological versatility of riboflavin. Biochem Soc Trans 28:283–296. doi:10.1074/jbc.M103114200

    Article  PubMed  CAS  Google Scholar 

  21. Masuda T (1955) Application of chromatography. XXVIII. On the formation of FAD in the culture of Eremothecium ashbyii. Pharm Bull 3:434–440

    Article  PubMed  CAS  Google Scholar 

  22. Montgomery DC (1997) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  23. Nagatsu T, Nagatsu-Ishibashi I, Yagi K (1963) Biosynthesis of C14-labelled flavin adenine dinucleotide by Eremothecium ashbyii. J Biochem 54:152–155 (Tokyo)

    PubMed  CAS  Google Scholar 

  24. Nguyen H-V, Gaillardin C, Neuveglise C (2009) Differentiation of Debaryomyces hansenii and Candida famata by rRNA gene intergenic spacer fingerprinting and reassessment of phylogenetic relationships among D. hansenii, C. famata, D. fabryi, C. flareri (= D. subglobosus) and D. prosopidis: description of D. vietnamensis sp. nov. Closely related to D. nepalensis. FEMS Yeast Res 9(4):641–662. doi:10.1111/j.1567-1364.2009.00510.x

    Article  PubMed  CAS  Google Scholar 

  25. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33(4):305–325

    Article  Google Scholar 

  26. Pujari V, Chandra TS (2000) Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii. Process Biochem 36(1–2):31–37. doi:10.1016/S0032-9592(00)00173-4

    Article  CAS  Google Scholar 

  27. Rai SK, Mukherjee AK (2010) Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin-like serine protease (Alzwiprase) from Bacillus subtilis DM-04. Biochem Eng J 48:173–180. doi:10.1016/j.bej.2009.09.007

    Article  CAS  Google Scholar 

  28. Sakai T, Watanabe T, Chibata I (1973) Selection of microorganism producing flavin-adenine dinucleotide from FMN and adenine (AMP) and production of flavin-adenine dinucleotide by Sarcina lutea. Agric Biol Chem 37:849–856

    Article  CAS  Google Scholar 

  29. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  30. Sandoval FJ, Zhang Y, Roje S (2008) Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize FAD in plastids. J Biol Chem 283(45):30890–30900. doi:10.1074/jbc.M803416200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Shavlovskii GM, Fedorovich DV (1977) The activity of enzymes involved in synthesis and hydrolysis of flavin adenine dinucleotide in Pichia guilliermondii: studies at different levels of flavinogenesis. Mikrobiologiia 46:904–911 (In Russian)

    PubMed  CAS  Google Scholar 

  32. Shimizu S (2001) Vitamins and related compounds: microbial production. In: Rehm H (ed) Biotechnology, vol 10., Wiley-VCHWeinheim, Germany, pp 322–326

    Google Scholar 

  33. Shimizu S, Yamane K, Tani Y, Yamada H (1983) Enzymatic synthesis of flavin adenine dinucleotide. Appl Biochem Biotechnol 8:237–247

    Article  PubMed  CAS  Google Scholar 

  34. Voronovsky AA, Abbas CA, Fayura LR, Kshanovska BV, Dmytruk KV, Sybirna KA, Sibirny AA (2002) Development of a transformation system for the flavinogenic yeast Candida famata. FEMS Yeast Res 2:381–388. doi:10.1016/S1567-1356(02)00112-5

    PubMed  CAS  Google Scholar 

  35. Watanabe T, Uchida T, Kato J, Chibata I (1974) Production of flavine-adenine dinucleotide from riboflavine by a mutant of Sarcina lutea. Arch Microbiol 27:531–536

    CAS  Google Scholar 

  36. Wu M, Repetto B, Glerum DM, Tzagoloff A (1995) Cloning and characterization of FAD1, the structural gene for flavin adenine dinucleotide synthetase of Saccharomyces cerevisiae. Mol Cell Biol 15:264–271

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Wu QL, Chen T, Gan Y, Chen X, Zhao XM (2007) Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs. Appl Microbiol Biotechnol 76:783–794. doi:10.1007/s00253-007-1049-y

    Article  PubMed  CAS  Google Scholar 

  38. Yagi K, Matsuoka Y, Kuyama S, Tada M (1956) Preparation of flavin adenine dinucleotide from Eremothecium ashbyii. J Biochem 43:93–100

    CAS  Google Scholar 

  39. Yatsyshyn VY, Fedorovych DV, Sibirny AA (2010) Medium optimization for production of flavin mononucleotide by the recombinant strain of the yeast Candida famata using statistical designs. Biochem Eng J 49(1):52–60. doi:10.1016/j.bej.2009.11.010

    Article  CAS  Google Scholar 

  40. Yatsyshyn VY, Fedorovych DV, Sibirny AA (2009) The microbial synthesis of flavin nucleotides: a review. Appl Biochem Microbiol 45(2):115–124. doi:10.1134/S000368380902001X

    Article  CAS  Google Scholar 

  41. Yatsyshyn VY, Ishchuk OP, Voronovsky AY, Fedorovych DV, Sibirny AA (2009) Production of flavin mononucleotide by metabolically engineered yeast Candida famata. Metab Eng 11:163–167. doi:10.1016/j.ymben.2009.01.004

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy A. Sibirny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yatsyshyn, V.Y., Fedorovych, D.V. & Sibirny, A.A. Metabolic and bioprocess engineering of the yeast Candida famata for FAD production. J Ind Microbiol Biotechnol 41, 823–835 (2014). https://doi.org/10.1007/s10295-014-1422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1422-7

Keywords

Navigation