Skip to main content
Log in

Production of recombinant Agaricus bisporus tyrosinase in Saccharomyces cerevisiae cells

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

It has been demonstrated that Agaricus bisporus tyrosinase is able to oxidize various phenolic compounds, thus being an enzyme of great importance for a number of biotechnological applications. The tyrosinase-coding PPO2 gene was isolated by reverse-transcription polymerase chain reaction (RT-PCR) using total RNA extracted from the mushroom fruit bodies as template. The gene was sequenced and cloned into pYES2 plasmid, and the resulting pY-PPO2 recombinant vector was then used to transform Saccharomyces cerevisiae cells. Native polyacrylamide gel electrophoresis followed by enzymatic activity staining with l-3,4-dihydroxyphenylalanine (l-DOPA) indicated that the recombinant tyrosinase is biologically active. The recombinant enzyme was overexpressed and biochemically characterized, showing that the catalytic constants of the recombinant tyrosinase were higher than those obtained when a commercial tyrosinase was used, for all the tested substrates. The present study describes the recombinant production of A. bisporus tyrosinase in active form. The produced enzyme has similar properties to the one produced in the native A. bisporus host, and its expression in S. cerevisiae provides good potential for protein engineering and functional studies of this important enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdel-Raheem A, Shearer CA (2002) Extracellular enzyme production by freshwater ascomycetes. Fungal Divers 11:1–19

    Google Scholar 

  2. Aberg CM, Chen T, Olumide A, Raghavan SR, Payne GF (2004) Enzymatic grafting of peptides from casein hydrolysate to chitosan potential for value-added byproducts from food-processing wastes. J Agric Food Chem 52:788–793

    Article  PubMed  CAS  Google Scholar 

  3. Bleve G, Lezzi C, Mita G, Rampino P, Perrotta C, Villanova L, Grieco F (2008) Molecular cloning and heterologous expression of a laccase gene from Pleurotus eryngii in free and immobilized Saccharomyces cerevisiae cells. Appl Microbiol Biotech 79:731–741

    Article  CAS  Google Scholar 

  4. Böyükbayram AE, Kiralp S, Toppare L, Yagci Y (2006) Preparation of biosensors by immobilization of polyphenol oxidase in conducting copolymers ad their use in determination of phenolic compounds in red wine. Bioelectrochemistry 69:164–171

    Article  PubMed  Google Scholar 

  5. Buchert J, Ercili Cura D, Ma H et al (2010) Crosslinking food proteins for improved functionality. Annu Rev Food Sci Technol 1:113–138

    Article  PubMed  CAS  Google Scholar 

  6. Burke D, Dawson D, Stearns T (2000) Methods in yeast genetics. A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  7. Diethard M, Branduardi P, Dato L, Gasser B, Sauer M, Porro D (2012) Recombinant protein production in yeasts. Methods Mol Biol 824:329–358

    Article  Google Scholar 

  8. Fenoll LG, Rodriguez-Lopez JN, García-Sevilla F, García-Ruiz PA, Varon R, García-Cánovas F, Tudela J (2001) Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenols and diphenols generating highly unstable o-quinones. Biochem Biophys Acta 1548:1–22

    Article  PubMed  CAS  Google Scholar 

  9. Flurkey A, Cooksey J, Reddy A, Spoonmore K, Rescigno A, Inlow J, Flurkey WH (2008) Enzyme, protein, carbohydrate, and phenolic contaminants in commercial tyrosinase preparations: potential problems affecting tyrosinase activity and inhibition studies. J Agric Food Chem 56:4760–4768

    Article  PubMed  CAS  Google Scholar 

  10. Freddi G, Anghileri A, Sampaio S, Buchert J, Monti P, Taddei P (2006) Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions. J Biotechnol 125:281–294

    Article  PubMed  CAS  Google Scholar 

  11. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  PubMed  CAS  Google Scholar 

  12. Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100:219–232

    Article  PubMed  CAS  Google Scholar 

  13. Halaouli S, Record E, Casalot L, Hamdi M, Sigoillot J-C, Asther M, Lomascolo A (2006) Cloning and characterization of a tyrosinase gene from the white-rot fungus Pycnoporus sanguineus, and overproduction of the recombinant protein in Aspergillus niger. Appl Microbiol Biotechnol 70:580–589

    Article  PubMed  CAS  Google Scholar 

  14. Heukeshoven J, Dernick R (1985) Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6:103–112

    Article  CAS  Google Scholar 

  15. Ikehata K, Nicell JA (2000) Color and toxicity removal following tyrosinase-catalyzed oxidation of phenols. Biotechnol Prog 16:533–540

    Article  PubMed  CAS  Google Scholar 

  16. Ismaya WT, Rozeboom HJ, Weijn A, Mes JJ, Fusetti F, Wichers HJ, Dijkstra BW (2011) Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone. Biochemistry 50:5477–5486

    Article  PubMed  CAS  Google Scholar 

  17. Jewell WT, Ebeler SE (2001) Tyrosinase biosensor for the measurement of wine polyphenolics. Am J Enol Viticult 52:219–222

    CAS  Google Scholar 

  18. Kim YJ, Uyama H (2005) Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci 62:1707–1723

    Article  PubMed  CAS  Google Scholar 

  19. Krol ES, Bolton JL (1997) Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation. Chem Biol Interact 104:11–27

    Article  PubMed  CAS  Google Scholar 

  20. Lerch K (1983) Neurospora tyrosinase: structural, spectroscopic and catalytic properties. Mol Cell Biochem 52:125–138

    Article  PubMed  CAS  Google Scholar 

  21. Marusek CM, Trobough NM, Flurkey WH, Inlow JK (2006) Comparative analysis of poliphenol oxidase from plant and fungal species. J Inorg Biochem 100:108–123

    Article  PubMed  CAS  Google Scholar 

  22. McMahon AM, Doylea EM, Brooksa S, O’Connorb KE (2007) Biochemical characterization of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida. Enz MicrobTechnol 40:1435–1441

    Article  CAS  Google Scholar 

  23. Rao A, Pimprikar P, Bendigiri C, Kumar AR, Zinjarde S (2011) Cloning and expression of a tyrosinase from Aspergillus oryzae in Yarrowia lipolytica: application in L-DOPA biotransformation. Appl Microbiol Biotechnol 92:951–959

    Article  PubMed  CAS  Google Scholar 

  24. Rescigno A, Zucca P, Flurkey A, Inlow J, Flurkey WH (2007) Identification and discrimination between some contaminant enzyme activities in commercial preparations of mushroom tyrosinase. Enzyme Microb Technol 41:620–627

    Article  CAS  Google Scholar 

  25. Robb DA (1984) Tyrosinase. In: Lontie R (ed) Copper proteins and copper enzymes, vol 2. CRC, Boca Raton, pp 207–240

    Google Scholar 

  26. Robb DA, Gutteridge S (1981) Polypeptide composition of two fungal tyrosinases. Phytochemistry 20:1481–1485

    Article  CAS  Google Scholar 

  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  28. Selinheimo E, Saloheimo M, Ahola E, Westerholm-Parvinen A, Kalkkinen N, Buchert J, Kruus K (2006) Production and characterization of a secreted, C-terminally processed tyrosinase from the filamentous fungus Trichoderma reesei. FEBS J 273:4322–4335

    Article  PubMed  CAS  Google Scholar 

  29. Selinheimo E, NiEidhin D, Steffensen C, Nielsen J, Lomascolo A, Halaouli S, Record E, O’Beirne D, Buchert J, Kruus K (2007) Comparison of the characteristics of fungal and plant tyrosinases. J Biotechnol 130:471–480

    Article  PubMed  CAS  Google Scholar 

  30. Seo SY, Sharma VK, Sharma N (2003) Mushroom tyrosinase: recent prospects. J Agric Food Chem 51:2837–2853

    Article  PubMed  CAS  Google Scholar 

  31. Strothkemp KG, Jolley RL, Mason HS (1976) Quaternary structure of mushroom tyrosinase. Biochem Biophys Res Commun 70:519–524

    Article  Google Scholar 

  32. Sugumaran M, Bolton JL (1998) Laccase—and not tyrosinase—is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol. Arch Biochem Biophys 353:207–212

    Article  PubMed  CAS  Google Scholar 

  33. Sugumaran M, Lipke H (1983) Quinone methide formation from 4-alkylcatechols: a novel reaction catalyzed by cuticular polyphenol oxidase. FEBS Lett 155:65–68

    Article  CAS  Google Scholar 

  34. Tomsovsky M, Homolka L (2004) Tyrosinase activity discovered from Trametes spp. World J Microbiol Biotechnol 20:529–530

    Article  CAS  Google Scholar 

  35. Van Gelder CWG, Flurkey WH, Wichers HJ (1997) Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45:1309–1323

    Article  PubMed  Google Scholar 

  36. Westerholm-Parvinen A, Selinheimo E, Boera H, Kalkkinen N, Mattinena M, Markku M (2007) Expression of the Trichoderma reesei tyrosinase 2 in Pichia pastoris: isotopic labeling and physicochemical characterization. Prot Expr Purif 55:147–158

    Article  CAS  Google Scholar 

  37. Wichers HJ, Gerritse YA, Chapelon CGJ (1996) Tyrosinase isoforms from the fruitbodies of Agaricus bisporus. Phytochemistry 43:333–337

    Article  CAS  Google Scholar 

  38. Wichers HJ, Recourt K, Hendriks M, Ebbelaar CEM, Biancone G, Hoeberichts FA, Mooibroek H, Soler-rivas C (2003) Cloning, expression and characterization of two tyrosinase cDNAs from Agaricus bisporus. Appl Microbiol Biotechnol 61:336–341

    PubMed  CAS  Google Scholar 

  39. Wu J, Chen H, Gao J, Liu X, Cheng W, Ma X (2010) Cloning, characterization and expression of two new polyphenol oxidase cDNAs from Agaricus bisporus. Biotechnol Lett 32:1439–1447

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the native speaker Prof. H. Caffery for proofreading and providing valuable linguistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Grieco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lezzi, C., Bleve, G., Spagnolo, S. et al. Production of recombinant Agaricus bisporus tyrosinase in Saccharomyces cerevisiae cells. J Ind Microbiol Biotechnol 39, 1875–1880 (2012). https://doi.org/10.1007/s10295-012-1192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1192-z

Keywords

Navigation