Skip to main content
Log in

Biofilm-forming bacteria with varying tolerance to peracetic acid from a paper machine

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Biofilms cause runnability problems in paper machines and are therefore controlled with biocides. Peracetic acid is usually effective in preventing bulky biofilms. This study investigated the microbiological status of a paper machine where low concentrations (≤15 ppm active ingredient) of peracetic acid had been used for several years. The paper machine contained a low amount of biofilms. Biofilm-forming bacteria from this environment were isolated and characterized by 16S rRNA gene sequencing, whole-cell fatty acid analysis, biochemical tests, and DNA fingerprinting. Seventy-five percent of the isolates were identified as members of the subclades Sphingomonas trueperi and S. aquatilis, and the others as species of the genera Burkholderia (B. cepacia complex), Methylobacterium, and Rhizobium. Although the isolation media were suitable for the common paper machine biofoulers Deinococcus, Meiothermus, and Pseudoxanthomonas, none of these were found, indicating that peracetic acid had prevented their growth. Spontaneous, irreversible loss of the ability to form biofilm was observed during subculturing of certain isolates of the subclade S. trueperi. The Sphingomonas isolates formed monoculture biofilms that tolerated peracetic acid at concentrations (10 ppm active ingredient) used for antifouling in paper machines. High pH and low conductivity of the process waters favored the peracetic acid tolerance of Sphingomonas sp. biofilms. This appears to be the first report on sphingomonads as biofilm formers in warm water using industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allegrucci M, Sauer K (2007) Characterization of colony morphology variants isolated from Streptococcus pneumoniae biofilms. J Bacteriol 189:2030–2038. doi:10.1128/JB.01369-06

    Article  PubMed  CAS  Google Scholar 

  2. Azeredo J, Oliveira R (2000) The role of exopolymers produced by Sphingomonas paucimobilis in biofilm formation and composition. Biofouling 16:17–27. doi:10.1080/08927010009378427

    Article  CAS  Google Scholar 

  3. Block SS (2001) Peroxygen compounds. In: Block SS (ed) Disinfection, sterilization, and preservation, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 185–204

    Google Scholar 

  4. Bore E, Langsrud S (2005) Characterization of micro-organisms isolated from dairy industry after cleaning and fogging disinfection with alkyl amine and peracetic acid. J Appl Microbiol 98:96–105. doi:10.1111/j.1365-2672.2004.02436.x

    Article  PubMed  CAS  Google Scholar 

  5. Buonaurio R, Stravato VM, Kosako Y, Fujiwara N, Naka T, Kobayashi K, Cappelli C, Yabuuchi E (2002) Sphingomonas melonis sp. nov., a novel pathogen that causes brown spots on yellow Spanish melon fruits. Int J Syst Evol Microbiol 52:2081–2087. doi:10.1099/ijs.0.02063-0

    Article  PubMed  CAS  Google Scholar 

  6. Busse HJ, Kämpfer P, Denner EB (1999) Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 23:242–251. doi:10.1038/sj/jim/2900745

    Article  PubMed  CAS  Google Scholar 

  7. Busse HJ, Kainz A, Tsitko IV, Salkinoja-Salonen M (2000) Riboprints as a tool for rapid preliminary identification of sphingomonads. Syst Appl Microbiol 23:115–123

    PubMed  CAS  Google Scholar 

  8. Busse HJ, Hauser E, Kämpfer P (2005) Description of two novel species, Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol 55:2565–2569. doi:10.1099/ijs.0.63872-0

    Article  PubMed  CAS  Google Scholar 

  9. Chang C, Jin X, Chaoqun H (2009) Phenotypic and genetic differences between opaque and translucent colonies of Vibrio alginolyticus. Biofouling 25:525–531. doi:10.1080/08927010902964578

    Article  PubMed  CAS  Google Scholar 

  10. Denner EB, Paukner S, Kämpfer P, Moore ER, Abraham WR, Busse HJ, Wanner G, Lubitz W (2001) Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 51:827–841

    Article  PubMed  CAS  Google Scholar 

  11. Desjardins E, Beaulieu C (2003) Identification of bacteria contaminating pulp and a paper machine in a Canadian paper mill. J Ind Microbiol Biotechnol 30:141–145. doi:10.1007/s10295-002-0017-x

    PubMed  CAS  Google Scholar 

  12. Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743. doi:10.1038/416740a

    Article  PubMed  CAS  Google Scholar 

  13. Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  PubMed  CAS  Google Scholar 

  14. Ekman J, Kosonen M, Jokela S, Kolari M, Korhonen P, Salkinoja-Salonen M (2007) Detection and quantitation of colored deposit-forming Meiothermus spp. in paper industry processes and end products. J Ind Microbiol Biotechnol 34:203–211. doi:10.1007/s10295-006-0187-z

    Article  PubMed  CAS  Google Scholar 

  15. Fialho AM, Moreira LM, Granja AT, Popescu AO, Hoffmann K, Sa-Correia I (2008) Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 79:889–900. doi:10.1007/s00253-008-1496-0

    Article  PubMed  CAS  Google Scholar 

  16. Gauthier V, Redercher S, Block JC (1999) Chlorine inactivation of Sphingomonas cells attached to goethite particles in drinking water. Appl Environ Microbiol 65:355–357

    PubMed  CAS  Google Scholar 

  17. Haapala A, Liimatainen H, Körkkö M, Ekman J, Salkinoja-Salonen M, Niinimäki J (2010) Web defects in newsprint production—a mill case study. Appita J 63:358–363

    CAS  Google Scholar 

  18. Hunt ME, Rice EW (2005) Microbiological examination. In: Eaton AD, Clesceri LS, Rice EW, Greenberg AE (eds) Standard methods for the examination of water and wastewater, 21st edn. Port City Press, Baltimore, pp 9–35, 9-51–9-52

    Google Scholar 

  19. Kämpfer P, Denner EB, Meyer S, Moore ER, Busse HJ (1997) Classification of “Pseudomonas azotocolligans” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583. doi:10.1099/00207713-47-2-577

    Article  PubMed  Google Scholar 

  20. Kearns DB, Chu F, Branda SS, Kolter R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55:739–749. doi:10.1111/j.1365-2958.2004.04440.x

    Article  PubMed  CAS  Google Scholar 

  21. Kitis M (2004) Disinfection of wastewater with peracetic acid: a review. Environ Int 30:47–55. doi:10.1016/S0160-4120(03)00147-8

    Article  PubMed  CAS  Google Scholar 

  22. Kolari M, Nuutinen J, Salkinoja-Salonen MS (2001) Mechanisms of biofilm formation in paper machine by Bacillus species: the role of Deinococcus geothermalis. J Ind Microbiol Biotechnol 27:343–351. doi:10.1038/sj/jim/7000201

    Article  PubMed  CAS  Google Scholar 

  23. Kolari M, Nuutinen J, Rainey FA, Salkinoja-Salonen MS (2003) Colored moderately thermophilic bacteria in paper-machine biofilms. J Ind Microbiol Biotechnol 30:225–238. doi:10.1007/s10295-003-0047-z

    PubMed  CAS  Google Scholar 

  24. Koskinen R, Ali-Vehmas T, Kämpfer P, Laurikkala M, Tsitko I, Kostyal E, Atroshi F, Salkinoja-Salonen M (2000) Characterization of Sphingomonas isolates from Finnish and Swedish drinking water distribution systems. J Appl Microbiol 89:687–696. doi:10.1046/j.1365-2672.2000.01167.x

    Article  PubMed  CAS  Google Scholar 

  25. Krejci E, Kroppenstedt RM (2006) Differentiation of species combined into the Burkholderia cepacia complex and related taxa on the basis of their fatty acid patterns. J Clin Microbiol 44:1159–1164. doi:10.1128/JCM.44.3.1159-1164.2006

    Article  PubMed  CAS  Google Scholar 

  26. Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR, Park YH (2001) Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51:1491–1498

    PubMed  CAS  Google Scholar 

  27. Marquis RE, Rutherford GC, Faraci MM, Shin SY (1995) Sporicidal action of peracetic acid and protective effects of transition metal ions. J Ind Microbiol 15:486–492. doi:10.1007/BF01570019

    Article  PubMed  CAS  Google Scholar 

  28. Martin DJ, Denyer SP, McDonnell G, Maillard JY (2008) Resistance and cross-resistance to oxidising agents of bacterial isolates from endoscope washer disinfectors. J Hosp Infect 69:377–383. doi:10.1016/j.jhin.2008.04.010

    Article  PubMed  CAS  Google Scholar 

  29. Martins LO, Fialho AM, Rodrigues PL, SaCorreia I (1996) Gellan gum production and activity of biosynthetic enzymes in Sphingomonas paucimobilis mucoid and non-mucoid variants. Biotechnol Appl Biochem 24:47–54

    CAS  Google Scholar 

  30. McFaddin JF (2000) Biochemical tests for identification of medical bacteria, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 78–97, 368–378, 412–423

    Google Scholar 

  31. Monk IR, Cook GM, Monk BC, Bremer PJ (2004) Morphotypic conversion in Listeria monocytogenes biofilm formation: biological significance of rough colony isolates. Appl Environ Microbiol 70:6686–6694. doi:10.1128/AEM.70.11.6686-6694.2004

    Article  PubMed  CAS  Google Scholar 

  32. O’Donnell MJ, Shore AC, Russell RJ, Coleman DC (2007) Optimisation of the long-term efficacy of dental chair waterline disinfection by the identification and rectification of factors associated with waterline disinfection failure. J Dent 35:438–451. doi:10.1016/j.jdent.2007.01.001

    Article  PubMed  Google Scholar 

  33. Oppong D, King VM, Bowen JA (2000) Cultural and biochemical diversity of pink-pigmented bacteria isolated from paper mill slimes. J Ind Microbiol Biotechnol 25:74–80. doi:10.1038/sj.jim.7000036

    Article  CAS  Google Scholar 

  34. Paulus W (1993) Microbicides for the protection of materials. Chapman & Hall, London, pp 432–433

    Google Scholar 

  35. Peltola M, Kanto Öqvist C, Ekman J, Kosonen M, Jokela S, Kolari M, Korhonen P, Salkinoja-Salonen M (2008) Quantitative contributions of bacteria and of Deinococcus geothermalis to deposits and slimes in paper industry. J Ind Microbiol Biotechnol 35:1651–1657. doi:10.1007/s10295-008-0409-7

    Article  PubMed  CAS  Google Scholar 

  36. Peltola M, Neu TR, Raulio M, Kolari M, Salkinoja-Salonen MS (2008) Architecture of Deinococcus geothermalis biofilms on glass and steel: a lectin study. Environ Microbiol 10:1752–1759. doi:10.1111/j.1462-2920.2008.01596.x

    Article  PubMed  CAS  Google Scholar 

  37. Rättö M, Suihko ML, Siika-aho M (2005) Polysaccharide-producing bacteria isolated from paper machine slime deposits. J Ind Microbiol Biotechnol 32:109–114. doi:10.1007/s10295-005-0210-9

    Article  PubMed  Google Scholar 

  38. Reddy GS, Garcia-Pichel F (2007) Sphingomonas mucosissima sp. nov. and Sphingomonas desiccabilis sp. nov., from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 57:1028–1034. doi:10.1099/ijs.0.64331-0

    Article  PubMed  CAS  Google Scholar 

  39. Russell AD (2003) Similarities and differences in the responses of microorganisms to biocides. J Antimicrob Chemother 52:750–763. doi:10.1093/jac/dkg422

    Article  PubMed  CAS  Google Scholar 

  40. Rutala WA, Weber DJ, Healthcare Infection Control Practices Advisory Committee (2008) Guideline for disinfection and sterilization in healthcare facilities 2008. Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  41. Schultheis E, Dreger MA, Nimtz M, Wray V, Hempel DC, Nortemann B (2008) Structural characterization of the exopolysaccharide PS-EDIV from Sphingomonas pituitosa strain DSM 13101. Appl Microbiol Biotechnol 78:1017–1024. doi:10.1007/s00253-008-1383-8

    Article  PubMed  CAS  Google Scholar 

  42. Stolz A (2009) Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 81:793–811. doi:10.1007/s00253-008-1752-3

    Article  PubMed  CAS  Google Scholar 

  43. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209. doi:10.1146/annurev.micro.56.012302.160705

    Article  PubMed  CAS  Google Scholar 

  44. Suihko ML, Sinkko H, Partanen L, Mattila-Sandholm T, Salkinoja-Salonen M, Raaska L (2004) Description of heterotrophic bacteria occurring in paper mills and paper products. J Appl Microbiol 97:1228–1235. doi:10.1111/j.1365-2672.2004.02416.x

    Article  PubMed  CAS  Google Scholar 

  45. Szymanska J (2006) Bacterial decontamination of DUWL biofilm using Oxygenal 6. Ann Agric Environ Med 13:163–167

    PubMed  Google Scholar 

  46. Uhlich GA, Cooke PH, Solomon EB (2006) Analyses of the red-dry-rough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl Environ Microbiol 72:2564–2572. doi:10.1128/AEM.72.4.2564-2572.2006

    Article  PubMed  CAS  Google Scholar 

  47. Väisänen OM, Weber A, Bennasar A, Rainey FA, Busse HJ, Salkinoja-Salonen MS (1998) Microbial communities of printing paper machines. J Appl Microbiol 84:1069–1084. doi:10.1046/j.1365-2672.1998.00447.x

    Article  PubMed  Google Scholar 

  48. Wai SN, Mizunoe Y, Yoshida S (1999) How Vibrio cholerae survive during starvation. FEMS Microbiol Lett 180:123–131. doi:10.1111/j.1574-6968.1999.tb08786.x

    Article  PubMed  CAS  Google Scholar 

  49. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07

    Article  PubMed  CAS  Google Scholar 

  50. Xie CH, Yokota A (2006) Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int J Syst Evol Microbiol 56:889–893. doi:10.1099/ijs.0.64056-0

    Article  PubMed  CAS  Google Scholar 

  51. Yabuuchi E, Kosako Y (2005) Sphingomonas. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, Part C, 2nd edn. Springer, New York, pp 234–258

    Chapter  Google Scholar 

  52. Zanetti F, De Luca G, Sacchetti R, Stampi S (2007) Disinfection efficiency of peracetic acid (PAA): inactivation of coliphages and bacterial indicators in a municipal wastewater plant. Environ Technol 28:1265–1271. doi:10.1080/09593332808618886

    Article  PubMed  CAS  Google Scholar 

  53. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214. doi:10.1089/10665270050081478

    Article  PubMed  CAS  Google Scholar 

  54. Ziebuhr W, Heilmann C, Götz F, Meyer P, Wilms K, Straube E, Hacker J (1997) Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect Immun 65:890–896

    PubMed  CAS  Google Scholar 

  55. Zook CD, Busta FF, Brady LJ (2001) Sublethal sanitizer stress and adaptive response of Escherichia coli O157:H7. J Food Prot 64:767–769

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Finnish Graduate School for Applied Biosciences (ABS), the Academy of Finland Center of Excellence grant for “Photobiomics” (118637), and Kemira Pulp & Paper Chemicals. We thank Juhana Ahola and Jaakko Ekman for expert advice and the staff at the paper mills for help in sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stiina Rasimus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Densely yellow colonies of Sphingomonas sp. PVS52 and of its variant, PVS51, forming translucently yellow colonies. The image was taken of a plate of R2A agar (pH 7, grown at 37°C for 3 days) and the different colony forms are marked with arrows. PVS52 but not PVS51 attached to and grew as biofilm on a polystyrene surface (Fig. 1). (TIFF 957 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasimus, S., Kolari, M., Rita, H. et al. Biofilm-forming bacteria with varying tolerance to peracetic acid from a paper machine. J Ind Microbiol Biotechnol 38, 1379–1390 (2011). https://doi.org/10.1007/s10295-010-0921-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0921-4

Keywords

Navigation