Skip to main content
Log in

Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Acetic acid existing in a culture medium is one of the most limiting constraints in yeast growth and viability during ethanol fermentation. To improve acetic acid tolerance in Saccharomyces cerevisiae strains, a drug resistance marker-aided genome shuffling approach with higher screen efficiency of shuffled mutants was developed in this work. Through two rounds of genome shuffling of ultraviolet mutants derived from the original strain 308, we obtained a shuffled strain YZ2, which shows significantly faster growth and higher cell viability under acetic acid stress. Ethanol production of YZ2 (within 60 h) was 21.6% higher than that of 308 when 0.5% (v/v) acetic acid was added to fermentation medium. Membrane integrity, higher in vivo activity of the H+-ATPase, and lower oxidative damage after acetic acid treatment are the possible reasons for the acetic acid-tolerance phenotype of YZ2. These results indicated that this novel genome shuffling approach is powerful to rapidly improve the complex traits of industrial yeast strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbott DA, Knijnenburg TA, de Poorter LMI, Reinders MJT, Pronk JT, van Maris AJA (2007) Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Res 7(6):819–833

    Article  CAS  PubMed  Google Scholar 

  2. Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26(1):89–105

    Article  CAS  PubMed  Google Scholar 

  3. Bracey D, Holyoak CD, Nebe-von Caron G, Coote PJ (1998) Determination of the intracellular pH (pH(i)) of growing cells of Saccharomyces cerevisiae: the effect of reduced-expression of the membrane H+-ATPase. J Microbiol Meth 31(3):113–125

    Article  CAS  Google Scholar 

  4. Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12(2):323–337

    CAS  PubMed  Google Scholar 

  5. Chen AK, Gelling C, Rogers PL, Dawes IW, Rosche B (2009) Response of Saccharomyces cerevisiae to stress-free acidification. J Microbiol 47(1):1–8

    Article  PubMed  Google Scholar 

  6. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262(5134):689–695

    Article  CAS  PubMed  Google Scholar 

  7. Dai MH, Ziesman S, Ratcliffe T, Gill RT, Copley SD (2005) Visualization of protoplast fusion and quantitation of recombination in fused protoplasts of auxotrophic strains of Escherichia coli. Metab Eng 7(1):45–52

    Article  CAS  PubMed  Google Scholar 

  8. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34

    Article  CAS  PubMed  Google Scholar 

  9. Graves T, Narendranath NV, Dawson K, Power R (2006) Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J Ind Microbiol Biotechnol 33(6):469–474

    Article  CAS  PubMed  Google Scholar 

  10. Graves T, Narendranath NV, Dawson K, Power R (2007) Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash. Appl Microbiol Biotecnol 73(5):1190–1196

    Article  CAS  Google Scholar 

  11. Guldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24(13):2519–2524

    Article  CAS  PubMed  Google Scholar 

  12. Hida H, Yamada T, Yamada Y (2007) Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl Microbiol Biotecnol 73(6):1387–1393

    Article  CAS  Google Scholar 

  13. Hou L (2009) Novel methods of genome shuffling in Saccharomyces cerevisiae. Biotechnol Lett 31(5):671–677

    Article  CAS  PubMed  Google Scholar 

  14. Kai Z, Ping WX, Lina ZN, Jun L, Yan L, Tao J, Zhou DP (2008) Screening and breeding of high taxol producing fungi by genome shuffling. Sci China C Life Sci 51(3):222–231

    Article  Google Scholar 

  15. Kawahata M, Masaki K, Fujii T, Iefuji H (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6(6):924–936

    Article  CAS  PubMed  Google Scholar 

  16. Liu ZL (2006) Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotecnol 73(1):27–36

    Article  CAS  Google Scholar 

  17. Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415

    CAS  PubMed  Google Scholar 

  18. Mollapour M, Piper PW (2006) Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res 6(8):1274–1280

    Article  CAS  PubMed  Google Scholar 

  19. Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27(18):6446–6456

    Article  CAS  PubMed  Google Scholar 

  20. Montooth KL, Siebenthall KT, Clark AG (2006) Membrane lipid physiology and toxin catabolism underlie ethanol and acetic acid tolerance in Drosophila melanogaster. J Exp Biol 209(Pt 19):3837–3850

    Article  CAS  PubMed  Google Scholar 

  21. Nakazawa N, Iwano K (2004) Efficient selection of hybrids by protoplast fusion using drug resistance markers and reporter genes in Saccharomyces cerevisiae. J Biosci Bioeng 98(5):353–358

    CAS  PubMed  Google Scholar 

  22. Narendranath NV, Thomas KC, Ingledew WM (2001) Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol 26(3):171–177

    Article  CAS  PubMed  Google Scholar 

  23. Otte B, Grunwaldt E, Mahmoud O, Jennewein S (2009) Genome shuffling in Clostridium diolis DSM 15410 for improved 1, 3-propanediol production. Appl Environ Microbiol 75(24):7610–7616

    Article  CAS  PubMed  Google Scholar 

  24. Pampulha ME, Loureirodias MC (1989) Combined effect of acetic-acid, pH and ethanol on intracellular pH of fermenting yeast. Appl Microbiol Biotecnol 31(5–6):547–550

    Article  CAS  Google Scholar 

  25. Piper P, Mahe Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Muhlbauer M, Coote P, Kuchler K (1998) The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17(15):4257–4265

    Article  CAS  PubMed  Google Scholar 

  26. Portillo F, Serrano R (1989) Growth-control strength and active-site of yeast plasma-membrane ATPase studied by site-directed mutagenesis. Eur J Biochem 186(3):501–507

    Article  CAS  PubMed  Google Scholar 

  27. Serrano R (1984) Plasma-membrane ATPase of fungi and plants as a novel type of proton pump. Curr Top Cell Regul 23:87–126

    CAS  PubMed  Google Scholar 

  28. Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36(1):139–147

    Article  CAS  PubMed  Google Scholar 

  29. Viegas CA, Almeida PF, Cavaco M, Sa-Correia I (1998) The H(+)-ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability. Appl Environ Microbiol 64(2):779–783

    CAS  PubMed  Google Scholar 

  30. Wei P, Li Z, He P, Lin Y, Jiang N (2008) Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance. Biotechnol Appl Biochem 49(2):113–120

    Article  CAS  PubMed  Google Scholar 

  31. Yenush L, Mulet JM, Arino J, Serrano R (2002) The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. EMBO J 21(5):920–929

    Article  CAS  PubMed  Google Scholar 

  32. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415(6872):644–646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Johannes H. Hegemann and Thomas D. Petes for supply of plasmids pSH65 and pFA6a-kanMX4. Thanks also to Henan Tianguan Fuel Ethanol Co. Ltd. for yeast strains providing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Chang Wu.

Additional information

D.-Q. Zheng and X.-C. Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, DQ., Wu, XC., Wang, PM. et al. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae . J Ind Microbiol Biotechnol 38, 415–422 (2011). https://doi.org/10.1007/s10295-010-0784-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0784-8

Keywords

Navigation