Skip to main content
Log in

Cellulase production from Pseudoalteromonas sp. NO3 isolated from the sea squirt Halocynthia rorentzi

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Pseudoalteromonas sp. NO3 was isolated from the hemolymph of diseased sea squirts (Halocynthia rorentzi) with symptoms of soft tunic syndrome. The strain was found to produce an extracellular cellulase (CelY) that consisted of a 1,476 bp open reading frame encoding 491 amino acid residues with an approximate molecular mass of 52 kDa. Homologies of the deduced amino acid sequence of celY with the products of the celA, celX, celG and cel5Z genes were 92.6, 93.3, 92.6, and 59.1%, respectively. Additionally, CelY had 50–80% remnant catalytic activity at temperatures of 10–20°C. Highest carboxymethyl cellulose (CMC) hydrolysis was observed at pH 8.0 and 40°C. CMC activity was determined by zymogram active staining and different degraded product profiles for CelY were obtained when cellotetraose, cellopentaose, and CMC were used as substrates. This study identified a transglycosylation activity in CelY that allows the enzyme to digest G4 to G2 and G3 without the production of G1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  PubMed  Google Scholar 

  2. Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Kim H, Yun HD (2006) A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl Microbiol Biotechnol 73:618–630

    Article  CAS  PubMed  Google Scholar 

  3. Cantarel BL, Countinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238. doi:10.1093/nar/gkn663

    Article  CAS  PubMed  Google Scholar 

  4. Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481. doi:10.1016/j.biotechadv.2006.03.003

    Article  CAS  Google Scholar 

  5. Green F, Clausen CA, Highley TL (1989) Adaptation of the Nelson–Somogyi reducing-sugar assay to a microassay using microtiter plates. Anal Biochem 182:197–199. doi:10.1016/0003-2697(89)90578-2

    Article  CAS  PubMed  Google Scholar 

  6. Peralta-Yahay P, Carter BT, Lin H, Tao H, Cornish VW (2008) High-throughput selection for cellulase catalysts using chemical complementation. J Am Chem 130:17446–17452. doi:10.1021/ja8055744

    Article  CAS  Google Scholar 

  7. Iyo AH, Forsberg CW (1999) A cold-active glucanase from the ruminal bacterium Fibrobacter succinogenes S85. Appl Environ Microbiol 65:995–998. doi:10.1128/AEM.68.1.430-433.2002

    CAS  PubMed  Google Scholar 

  8. Hilden L, Johansson G (2004) Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol Lett 26:1683–1694

    Article  CAS  PubMed  Google Scholar 

  9. Ando S, Ishida H, Kosugi Y, Ishikawa K (2002) Hyperthermostable endoglucanase from Pyrococcus horikoshii. Appl Environ Microbiol 68:430–433

    Article  CAS  PubMed  Google Scholar 

  10. Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  11. van Soligen P, Meijer D, van der Kleij W, Barnet C, Bolle R, Power SD, Jones BE (2001) Cloning and expression of an endocellulase gene from a novel Streptomyces isolated from an East African soda lake. Extremophiles 5:333–341. doi:10.1007/s007920100198

    Article  Google Scholar 

  12. Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  CAS  PubMed  Google Scholar 

  13. Violot S, Haser R, Sonan G, Georlette D, Feller G, Aghajari N (2003) Expression, purification, crystallization and preliminary X-ray crystallographic studies of a psychrophilic cellulase from Pseudoalteromonas haloplanktis. Acta Cryst D59:1256–1258. doi:10.1107/S0907444903008849

    CAS  Google Scholar 

  14. Zeng R, Xiong P, Wen J (2006) Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles 10(79):82. doi:10.1007/s00792-005-0475-y

    Google Scholar 

  15. Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245

    Article  CAS  PubMed  Google Scholar 

  16. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  17. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Google Scholar 

  18. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  19. Swofford DL (1998) Phylogenetic analysis using parsimony (PAUP). Sinauer, Sunderland

    Google Scholar 

  20. Chun J, Bae KS, Moon EY, Jung SO, Lee HK, Kim SJ (2000) Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol 50:1909–1913

    CAS  PubMed  Google Scholar 

  21. ZoBell CE (1941) Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75

    Google Scholar 

  22. Smibert RM, Krieg NR (1994) General characterization. In: Gebhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654

    Google Scholar 

  23. Lyman J, Fleming RH (1940) Composition of sea water. J Mar Res 3:134–146

    CAS  Google Scholar 

  24. CLSI (2003) Performance standards for antimicrobial disk susceptibility tests. Clinical Laboratory Standards Institute, Wayne

    Google Scholar 

  25. Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  26. Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26–36. doi:10.1016/j.jbiotec.2006.02.011

    Article  CAS  PubMed  Google Scholar 

  27. Azumi K, Nakamura S, Kitamura S, Jung SJ, Kanehira K, Iwata H, Tanabe S, Suzuki S (2007) Accumulation of organotin compounds and marine birnavirus detection in Korean ascidians. Fish Sci 73:263–269

    Article  CAS  Google Scholar 

  28. Gauthier G, Gauthier M, Christen R (1995) Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45:755–761

    CAS  PubMed  Google Scholar 

  29. Isnansetyo A, Kamei Y (2003) Pseudoalteromonas phenolica sp. nov., a novel marine bacterium that produces phenolic antimethicillin-resistant Staphylococcus aureus substances. Int J Syst Evol Microbiol 53:583–588

    Article  CAS  PubMed  Google Scholar 

  30. Nam YD, Chang HW, Park JR, Kwon HY, Quan ZX, Park YH, Lee JS, Yoon JH, Bae JW (2007) Alteromonas marina sp. nov., a marine bacterium isolated from tidal flats of the Yellow Sea, and reclassification of Pseudoalteromonas sagamiensis as Algicola sagamiensis comb. nov. Int J Syst Evol Microbiol 57:12–18

    Article  CAS  PubMed  Google Scholar 

  31. Romanenko LA, Zhukova NV, Lysenko AM, Mikhailov VV, Stackebrandt E (2003) Assignment of ‘Alteromonas marinoglutinosa’ NCIMB 1770 to Pseudoalteromonas mariniglutinosa sp. nov., nom. rev., comb. nov. Int J Syst Evol Microbiol 53:1105–1109

    Article  CAS  PubMed  Google Scholar 

  32. Chi H, Kim S, Jeong E, Park N, Son J (2007) Isolation and identification of bioactive compounds from soybean and fermented soybean paste chungkukjang. Treat Crop Res 8:918–924

    Google Scholar 

  33. Leemhuis H, Euverink GW, Dijkhuizen L (2003) High-throughput screening for gene libraries expressing carbohydrate hydrolase activity. Biotechnol Lett 25:1643–1645

    Article  CAS  PubMed  Google Scholar 

  34. Nozaki N, Kano A, Amano Y, Murata T, Usui T, Ito K, Kanda T (2004) Transglycosylation reaction and acceptor specificity of exo- and endo-type cellulase. J Appl Glycosci 51:87–92

    CAS  Google Scholar 

  35. Kanda T, Noda I, Wakabayashi K, Nishizawa K (1983) Transglycosylation activities of exo- and endo-type cellulases from Irpex lacteus (Polyporus tulipiferae). J Biochem 93:787–794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the 21C Frontier Microbial Genomics and Applications Center Program, Ministry of Education, Science and Technology, Republic of Korea, and by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center) support program supervised by the IITA (Institute for Information Technology Advancement, IITA-2009-C1090-0902-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Nam Seong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Baik, K.S., Park, S.C. et al. Cellulase production from Pseudoalteromonas sp. NO3 isolated from the sea squirt Halocynthia rorentzi . J Ind Microbiol Biotechnol 36, 1375–1382 (2009). https://doi.org/10.1007/s10295-009-0623-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0623-y

Keywords

Navigation