Skip to main content
Log in

Bioremediation of nitroexplosive wastewater by an yeast isolate Pichia sydowiorum MCM Y-3 in fixed film bioreactor

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Nitroexplosives are essential for security and defense of the nation and hence their production continues. Their residues and transformed products, released in the environment are toxic to both terrestrial and aquatic life. This necessitates remediation of wastewaters containing such hazardous chemicals to reduce threat to human health and environment. Bioremediation technologies using microorganisms become the present day choice. High Melting Explosive (HMX) is one of the nitroexplosives produced by nitration of hexamine using ammonium nitrate and acetic anhydride and hence the wastewater bears high concentration of nitrate and acetate. The present investigation describes potential of a soil isolate of yeast Pichia sydowiorum MCM Y-3, for remediation of HMX wastewater in fixed film bioreactor (FFBR). The flask culture studies showed appreciable growth of the organism in HMX wastewater under shake culture condition within 5–6 days of incubation at ambient temperature (28 ± 2°C). The FFBR process operated in both batch and continuous mode, with Hydraulic Retention Time (HRT) of 1 week resulted in 50–55% removal in nitrate, 70–88% in acetate, 50–66% in COD, and 28–50% in HMX content. Continuous operation of the reactor showed better removal of nitrate as compared to that in the batch operation, while removal of acetate and COD was comparable in both the modes of operation of the reactor. Insertion of baffles in the reactor increased efficiency of the reactor. Thus, FFBR developed with baffles and operated in continuous mode will be beneficial for bioremediation of high nitrate and acetate containing wastewater using the culture of P. sydowiorum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmad F, Schnitker SP, Newell CJ (2007) Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers. J Contam Hydrol 90(1–2):1–20. doi:10.1016/j.jconhyd.2006.09.005

    Article  PubMed  CAS  Google Scholar 

  2. Bhatt M, Zhao JS, Halasz A, Hawari Z (2006) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by novel fungi isolated from unexploded ordnance contaminated marine sediment. J Ind Microbiol Biotechnol 33(10):850–858. doi:10.1007/s10295-006-0136-x

    Article  PubMed  CAS  Google Scholar 

  3. Bhatt M, Zhao JS, Monteil-Rivera F, Hawari Z (2005) Biodegradation of cyclic nitramines by tropical marine sediment bacteria. J Ind Microbiol Biotechnol 32(6):261–267. doi:10.1007/s10295-005-0239-9

    Article  PubMed  CAS  Google Scholar 

  4. Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316(3):816–821. doi:10.1016/j.bbrc.2004.02.120

    Article  PubMed  CAS  Google Scholar 

  5. Boopathy R, Gurgas M, Ullian J, Manning JF (1998) Metabolism of explosive compounds by sulfate-reducing bacteria. Curr Microbiol 37(2):127–131. doi:10.1007/s002849900350

    Article  PubMed  CAS  Google Scholar 

  6. Cooper PW, Card ER, Autenrieth R (1998) Treatment of HMX and RDX contamination in explosives engineering. Wiley-VCH, New York

    Google Scholar 

  7. Crocker FH, Indest KJ, Fedrickson KL (2006) Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl Microbiol Biotechnol 73(2):274–290. doi:10.1007/s00253-006-0588-y

    Article  PubMed  CAS  Google Scholar 

  8. Cruickshank RL (1965) Medical microbiology, 11th edn. The English Language Book Society, London

    Google Scholar 

  9. Dey S, Kanekar P, Godbole SH (1986) Aerobic microbial degradation of m-Dinitrobenzene. Indian J Environ Health 29(2):118–128

    CAS  Google Scholar 

  10. Dimkov R, Topalova Y (1993) Dependence of the microbiological degradation of aryl-containing xenobiotics on their concentration. Acta Microbiol Bulg 29:9–16

    PubMed  CAS  Google Scholar 

  11. Fournier D, Halasz A, Thiboutot S, Ampleman G, Manno D, Hawari J (2004) Biodegradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by Phenerochaete chrysosporium: new insight into the degradation pathway. Environ Sci Technol 38(15):4130–4133. doi:10.1021/es049671d

    Article  PubMed  CAS  Google Scholar 

  12. Greenberg AE, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), American Water Works Association, Water Environment Federation, Washington DC

    Google Scholar 

  13. Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (2001) Biotransformation routes of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by municipal anaerobic sludge. Environ Sci Technol 35(1):70–75. doi:10.1021/es0013531

    Article  PubMed  CAS  Google Scholar 

  14. Jain MR, Zinjarde SS, Deobagkar DD, Deobagkar DN (2004) 2, 4, 6-trinitrotoluene transformation by a tropical marine yeast Yarrowia lipolytica NCIM3589. Mar Pollut Bull 49(9–10):783–788. doi:10.1016/j.marpolbul.2004.06.007

    Article  PubMed  CAS  Google Scholar 

  15. Kanekar PP, Dautpure PS, Sarnaik SS (2003) Biodegradation of nitroexplosives. Indian J Exp Biol 41:991–1001

    PubMed  CAS  Google Scholar 

  16. Kanekar PP, Godbole SH (1984) Microbial degradation of Trinitrotoluene (TNT). Indian J Environ Health 20(2):89–101

    Google Scholar 

  17. Kaplan DL (1993) Biotechnology and bioremediation for organic energetic compounds. In Organic Energetic Compounds P. Marinkas, (ed). Nova Science Publishers, Inc., New York

  18. Khan IA, Khanum A (eds) (1994) Fundamentals of Biostatistics. Ukaaz Publications, Hyderabad

    Google Scholar 

  19. Kitts CL, Cunningham DP, Unkefer PJ (1994) Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil. Appl Environ Microbiol 60(12):4608–4611

    PubMed  CAS  Google Scholar 

  20. Krutzman CP, Fell JW (eds) (2000) The yeasts: a taxonomic study. Elsevier Science B. V, Netherlands

    Google Scholar 

  21. Kulkarni M, Chaudhari A (2007) Microbial remediation of nitro-aromatic compounds: an overview. J Environ Manage 85(2):496–512. doi:10.1016/j.jenvman.2007.06.009

    Article  PubMed  CAS  Google Scholar 

  22. Lodder J (1970) The yeasts: a taxonomic study, 2nd edn. North-Holland Publishing Company, Netherlands

    Google Scholar 

  23. McCormick NG, Cornell JH, Kaplan AM (1984) The fate of hexahydro-1,3,5- trinitro-1,3,5-triazine (RDX) and related compounds in anaerobic denitrifying continuous culture systems using simulated wastewater. Tech Rep Natick TR-85(008):ADA149462. US Army Natick Research and Development Center, Natick

    Google Scholar 

  24. Shivran HS, Kumar D, Singh RV (2006) Improvement of water quality through biological denitrification. J Environ Sci Engin 48(1):57–60

    CAS  Google Scholar 

  25. Spanggord RJ, Mabey WR, Mill T, Chou TW, Smith JH, Lee S, Robert D (1983) Environmental fate studies on certain munitions wastewater constituents. Phase IV-lagoon model studies. ADA138550. US Army Medical Research and Development Command, Fort Detrick, Frederick

    Google Scholar 

  26. Strietelmeier BA, Coyne PJ, Leonard PA, Miller WL, Brian JR (2006) Initial characterization of a highly contaminated high explosives outfall in preparation for in situ bioremediation. http://www.osti.gov/energycitations/servlets/purl/752372-4ucf9X

  27. Ternan NG, McMullan G (2002) Iminodiacetate and nitrilotriacetae degradation by Kluyveromyces marxianus IMB 3. Biochem Biophys Res Commun 290(2):802–805. doi:10.1006/bbrc.2001.6233

    Article  PubMed  CAS  Google Scholar 

  28. Toumi E, Coover MP, Stroo HF (1997) Bioremediation using composting or anaerobic treatment for ordnance-contaminated soils. Ann NY Acad Sci 829:160–178. doi:10.1111/j.1749-6632.1997.tb48573.x

    Article  Google Scholar 

  29. Van Aken B, Agathos SN (2001) Biodegradation of nitro substituted explosives by white-rot fungi: a mechanistic approach. Adv Appl Microbiol 48:1–77. doi:10.1016/S0065-2164(01)48000-2

    Article  PubMed  Google Scholar 

  30. Zhao JS, Greer CW, Thiboutot S, Ampleman G, Hawari J (2004) Biodegradation of the nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions. Can J Microbiol 50(2):91–96. doi:10.1139/w03-112

    Article  PubMed  Google Scholar 

  31. Zhao JS, Manno D, Hawari J (2007) Abundance and diversity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)-metabolizing bacteria in UXO-contaminated marine sediments. FEMS Microbiol Ecol 59(3):706–717. doi:10.1111/j.1574-6941.2006.00248.x

    Article  PubMed  CAS  Google Scholar 

  32. Zhao JS, Paquet L, Halasz A, Manno D, Hawari J (2004) Metabolism of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by Clostridium bifermentans strain HAW-1 and several other H2-producing fermentative anaerobic bacteria. FEMS Microbiol Lett 237(1):65–72. doi:10.1111/j.1574-6968.2004.tb09679.x

    Article  PubMed  CAS  Google Scholar 

  33. Zhao JS, Spain J, Thiboutot S, Ampleman G, Greer C, Hawari J (2004) Phylogeny of cyclic nitramine degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. FEMS Microbiol Ecol 49(3):349–357. doi:10.1016/j.femsec.2004.04.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of the work was carried out under Indo-US project sponsored by Indo-US Science and Technology Forum (IUSSTF), Govt of India and US Govt. The authors thank authorities of HEMRL, Pune for providing HMX wastewater and related information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Kanekar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanekar, S.P., Kanekar, P.P., Sarnaik, S.S. et al. Bioremediation of nitroexplosive wastewater by an yeast isolate Pichia sydowiorum MCM Y-3 in fixed film bioreactor. J Ind Microbiol Biotechnol 36, 253–260 (2009). https://doi.org/10.1007/s10295-008-0493-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0493-8

Keywords

Navigation