Skip to main content

Advertisement

Log in

Biodegradation of cyclic nitramines by tropical marine sediment bacteria

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Undersea deposition of unexploded ordnance (UXO) constitutes a potential source of contamination of marine environments by hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The goal of the present study was to determine microbial degradation of RDX and HMX in a tropical marine sediment sampled from a coastal UXO field in the region of Oahu Island in Hawaii. Sediment mixed cultures growing in marine broth 2216 (21°C) anaerobically mineralized 69% or 57% (CO2, 25 days) of the total carbon of [UL-14 C]-RDX (100 μM) or [UL-14 C]-HMX (10 μM), respectively. As detected by PCR-DGGE, members of γ-proteobacteria (Halomonas), sulfate-reducing δ-proteobacteria (Desulfovibrio), firmicutes (Clostridium), and fusobacterium appeared to be dominant in RDX-enrichment and/or HMX-enrichment cultures. Among 22 sediment bacterial isolates screened for RDX and HMX biodegradation activity under anaerobic conditions, 5 were positive for RDX and identified as Halomonas (HAW-OC4), Marinobacter (HAW-OC1), Pseudoalteromonas (HAW-OC2 and OC5) and Bacillus (HAW-OC6) by their 16S rRNA genes. Sediment bacteria degraded RDX to N2O and HCHO via the intermediary formation of hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and methylenedinitramine. The present findings demonstrate that cyclic nitramine contaminants are likely to be degraded upon release from UXO into tropical marine sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adrian NR, Arnett CM (2004) Anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methnaogenic mixed culture. Curr Microbiol 48:332–340

    Article  CAS  PubMed  Google Scholar 

  2. Balakrishnan VK, Halasz A, Hawari J (2003) Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates. Environ Sci Technol 37:1838–1843

    Article  CAS  PubMed  Google Scholar 

  3. Barer MR, Harwood CR (1999) Bacterial viability and culturability. Adv Microbial Physiol 41:93–137

    CAS  Google Scholar 

  4. Beller HR (2002) Anaerobic biotransformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by aquifer bacteria using hydrogen as the sole electron donor. Water Res 36:2533–2540

    Article  CAS  PubMed  Google Scholar 

  5. Boopathy R, Gurgas M, Ullian J, Manning JF (1998) Metabolism of explosive compounds by sulfate-reducing bacteria. Curr Microbiol 37:127–131

    Article  CAS  PubMed  Google Scholar 

  6. Bowman JP (2001) Methods for psychrophilic bacteria. In: Paul JH (ed) Methods in microbiology. Academic, Cambridge, pp 13–43

    Google Scholar 

  7. Crose M, Okamoto Y (1979) Cationic micellar catalysis of the aqueous alkaline hydrolysis of 1,3,5-triaza-1,3,5-trinitrocyclohexane and 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane. J Org Chem 44:2100–2103

    Article  Google Scholar 

  8. Darrach MR, Chutjian A, Plett GA (1998) Trace explosives signatures from World War II unexploded undersea ordnance. Environ Sci Technol 32:1354–1358

    Article  CAS  Google Scholar 

  9. Dobson SJ, McMeekin TA, Franzmann PD (1993) Phylogenetic relationships between some members of the genera Deleya, Halomonas, and Halovibrio. Int J Syst Bacteriol 43:665–673

    CAS  PubMed  Google Scholar 

  10. Environmental Protection Agency Environmental Monitoring and Support Laboratory Office of Research and Development (1979) USA EPA method 345.1. Methods for chemical analysis of water and wastes. Environmental Protection Agency, Cincinnati, Ohio

  11. Hawari J, Halasz A, Sheremata TW, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S (2000) Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol 66:2652–2657

    Article  CAS  PubMed  Google Scholar 

  12. Ishii K, Fukui M (2001) Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl Environ Microbiol 67:3753–3755

    Article  CAS  PubMed  Google Scholar 

  13. Jeffrey L, Davis JL, Wani AH, O’Neal BR, Hansen LD (2004) RDX biodegradation column study: comparison of electron donors for biologically induced reductive transformation in groundwater. J Hazard Mater 112:45–54

    Article  PubMed  Google Scholar 

  14. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “Uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    Article  CAS  PubMed  Google Scholar 

  15. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  CAS  PubMed  Google Scholar 

  16. Lotufo GR, Farrar JD, Inouye LS, Bridges TS, Ringelberg DB (2001) Toxicity of sediment-associated nitroaromatic and cyclonitramine compounds to benthic invertebrates. Environ Toxicol Chem 20:1762–1771

    Article  CAS  PubMed  Google Scholar 

  17. McCormick NG, Cornell JH, Kaplan AM (1981) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl Environ Microbiol 42:817–823

    CAS  Google Scholar 

  18. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    Google Scholar 

  19. Patel P, Callow ME, Joint I, Callow JA (2003) Specificity in the settlement—modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha. Environ Microbiol 5:338–349

    Article  CAS  PubMed  Google Scholar 

  20. Pennington JC, Jenkins TF, Ampleman G, Thiboutot S, Brannon JM, Lynch J, Ranney TA, Stark JA, Walsh ME, Lewis J, Hayes CA, Mirecki JE, Hewitt AD, Perron N, Lambert D, Clausen J, Delfino JJ (2002) Distribution and fate of energetics on DoD test and training ranges: interim report 1 ERDC TR-02-8. US Army Corps of Engineers, Washington, D.C.

    Google Scholar 

  21. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  PubMed  Google Scholar 

  22. Robidoux PY, Svendsen C, Caumartin J, Hawari J, Ampleman G, Thiboutot S, Weeks JM, Sunahara GI (2000) Chronic toxicity of energetic compounds in soil determined using the earthworm (Eisenia andrei) reproduction test. Environ Toxicol Chem 19:1764–1773

    Article  CAS  Google Scholar 

  23. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    CAS  PubMed  Google Scholar 

  24. Waisner S, Hansen L, Fredrickson H, Nestler C, Zappi M, Banerji S, Bajpai R (2002) Biodegradation of RDX within soil-water slurries using a combination of differing redox incubation conditions. J Hazard Mater 95:91–106

    Article  CAS  PubMed  Google Scholar 

  25. Yinon J (1990) Toxicity and metabolism of explosives. CRC, Ann Arbor

    Google Scholar 

  26. Zhao J-S, Greer CW, Thiboutot S, Ampleman G, Hawari J (2004) Biodegradation of cyclic nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions. Can J Microbiol 50:91–96

    Article  PubMed  Google Scholar 

  27. Zhao J-S, Spain J, Thiboutot S, Ampleman G, Greer C, Hawari J (2004) Phylogeny of cyclic nitramine-degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. FEMS Microbiol Ecol 49:349–357

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The sampling of surface sediments of offshore UXO fields was conducted by Drs. Michael T. Montgomery and Christopher L. Osburn (Marine Biogeochemistry Section, United States Naval Research Laboratory), Washington, D.C. We thank Louise Paquet, Annamaria Halasz, and Alain Corriveau for technical assistance. Manish Bhatt thanks the Natural Sciences and Engineering Research Council (NSERC) for a fellowship. Funding for this research was provided by the Office of Naval Research (ONR, United States Navy) (Grant N00014-03-1-0269) and the United States DoD/DoE/EPA Strategic Environmental Research and Development Program (SERDP CP-1431).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Hawari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatt, M., Zhao, JS., Monteil-Rivera, F. et al. Biodegradation of cyclic nitramines by tropical marine sediment bacteria. J IND MICROBIOL BIOTECHNOL 32, 261–267 (2005). https://doi.org/10.1007/s10295-005-0239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-005-0239-9

Keywords

Navigation