Skip to main content
Log in

Mannosylerythritol lipids: a review

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Mannosylerythritol lipids (MELs) are surface active compounds that belong to the glycolipid class of biosurfactants (BSs). MELs are produced by Pseudozyma sp. as a major component while Ustilago sp. produces them as a minor component. Although MELs have been known for over five decades, they recently regained attention due to their environmental compatibility, mild production conditions, structural diversity, self-assembling properties and versatile biochemical functions. In this review, the MEL producing microorganisms, the production conditions, their applications, their diverse structures and self-assembling properties are discussed. The biosynthetic pathways and the regulatory mechanisms involved in the production of MEL are also explained here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bhattacharjee SS, Haskins RH, Gorin PAJ (1970) Location of acyl groups on two partly acylated glycolipids from strains of Ustilago (smut fungi). Carbohydr Res 13:235–246. doi:10.1016/S0008-6215(00)80830-7

    Article  CAS  Google Scholar 

  2. Boothroyd B, Thorn JA, Haskins RH (1956) Biochemistry of the ustilaginales. XII. Characterization of extracellular glycolipids produced by Ustilago sp. Can J Biochem Physiol 34:10–14

    PubMed  CAS  Google Scholar 

  3. Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266. doi:10.1016/j.mib.2004.04.006

    Article  PubMed  CAS  Google Scholar 

  4. Davey ME, Caiazza NC, OToole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036. doi:10.1128/JB.185.3.1027-1036.2003

    Article  PubMed  CAS  Google Scholar 

  5. Deml G, Anke T, Oberwinkler F, Gianetti BM, Steglich W (1980) Schizonellin A and B, new glycolipids from Schizonella melanogramma. Phytochemistry 19:83–87. doi:10.1016/0031-9422(80)85018-7

    Article  CAS  Google Scholar 

  6. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    PubMed  CAS  Google Scholar 

  7. Deziel E, Lepine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013. doi:10.1099/mic.0.26154-0

    Article  PubMed  CAS  Google Scholar 

  8. Fluharty AL, O’Brien JS (1969) A mannose- and erythritol-containing glycolipid from Ustilago maydis. Biochemistry 8:2627–2632. doi:10.1021/bi00834a056

    Article  PubMed  CAS  Google Scholar 

  9. Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D (2007) Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts. Biotechnol Lett 29:1111–1118. doi:10.1007/s10529-007-9363-0

    Article  PubMed  CAS  Google Scholar 

  10. Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D (2007) Characterisation of new types of mannosylerythritol lipids as biosurfactants produced from soybean oil by a Basidiomycetes yeast, Pseudozyma shanxiensis. J Oleo Sci 56:435–442

    PubMed  CAS  Google Scholar 

  11. Fukuoka T, Morita T, Konishi M, Imura T, Sakai H, Kitamoto D (2007) Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica. Appl Microbiol Biotechnol 76:801–810. doi:10.1007/s00253-007-1051-4

    Article  PubMed  CAS  Google Scholar 

  12. Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D (2008) A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B. Carbohydr Res 343:555–560

    Article  PubMed  CAS  Google Scholar 

  13. Hamme JDV, Singh A, Ward OP (2006) Physiological aspects Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620. doi:10.1016/j.biotechadv.2006.08.001

    Article  PubMed  CAS  Google Scholar 

  14. Haskins RH, Thorn JA, Boothroyd B (1955) Biochemistry of the ustilagenales. XI. Metabolic products of Ustilago zeae in submerged culture. Can J Microbiol 1:749–756

    Article  PubMed  CAS  Google Scholar 

  15. Im JH, Nakane T, Yanagishita H, Ikegami T, Kitamoto D (2001) Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G. BMC Biotechnol 1:5. http://www.biomedcentral.com/1472-6750/1/5. doi:10.1186/1472-6750-1-5

  16. Im JH, Yanagishita H, Ikegami T, Takeyama Y, Idemoto Y, Koura N et al (2003) Mannosylerythritol lipids, yeast glycolipid biosurfactants, are potential affinity ligand materials for human immunoglobulin G. J Biomed Mater Res 65A:379–385. doi:10.1002/jbm.a.10491

    Article  CAS  Google Scholar 

  17. Imura T, Yanagishita H, Kitamoto D (2004) Coacervate formation from natural glycolipid: one acetyl group on the headgroup triggers coacervate-to-vesicle transition. J Am Chem Soc 126:10804–10805. doi:10.1021/ja0400281

    Article  PubMed  CAS  Google Scholar 

  18. Imura T, Yanagishita H, Ohira J, Sakai H, Abeb M, Kitamoto D (2005) Thermodynamically stable vesicle formation from glycolipid biosurfactant sponge phase. Colloids Surf B Biointerfaces 43:115–121. doi:10.1016/j.colsurfb.2005.03.015

    Article  PubMed  CAS  Google Scholar 

  19. Imura T, Ohta N, Inoue K, Yagi N, Negishi H, Yanagishita H et al (2006) Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures. Chem Eur J 12:2434–2440. doi:10.1002/chem.200501199

    Article  CAS  Google Scholar 

  20. Imura T, Hikosaka Y, Worakitkanchanakul W, Sakai H, Abe M, Konishi M et al (2007) Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases. Langmuir 23:1659–1663. doi:10.1021/la0620814

    Article  PubMed  CAS  Google Scholar 

  21. Imura T, Ito S, Azumi R, Yanagishita H, Sakai H, Abe M et al (2007) Monolayers assembled from a glycolipid biosurfactant from Pseudozyma (Candida) antarctica serve as a high-affinity ligand system for immunoglobulin G and M. Biotechnol Lett 29:865–870. doi:10.1007/s10529-007-9335-4

    Article  PubMed  CAS  Google Scholar 

  22. Inaba H (2000) New challenge in advanced thermal energy transportation using functionally thermal fluids. Int J Therm Sci 39:991–1003. doi:10.1016/S1290-0729(00)01191-1

    Article  CAS  Google Scholar 

  23. Inoh Y, Kitamoto D, Hirashima N, Nakanishi M (2001) Biosurfactants of MEL-A increase gene transfection mediated by cationic liposomes. Biochem Biophys Res Commun 289:57–61. doi:10.1006/bbrc.2001.5930

    Article  PubMed  CAS  Google Scholar 

  24. Inoh Y, Kitamoto D, Hirashima N, Nakanishi M (2004) Biosurfactant MEL-A dramatically increases gene transfection via membrane fusion. J Control Release 94:423–431. doi:10.1016/j.jconrel.2003.10.020

    Article  PubMed  CAS  Google Scholar 

  25. Isoda H, Kitamoto D, Shinmoto H, Matsumura M, Nakahara T (1997) Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60. Biosci Biotechnol Biochem 61:609–614

    PubMed  CAS  Google Scholar 

  26. Isoda H, Shinmoto H, Kitamoto D, Matsumura M, Nakahara T (1997) Differentiation of human promyelocytic leukemia cell line HL60 by microbial extracellular glycolipids. Lipids 32:263–271. doi:10.1007/s11745-997-0033-0

    Article  PubMed  CAS  Google Scholar 

  27. Isoda H, Nakahara T (1997) Mannosylerythritol lipid induces granulocytic differentiation and inhibits the tyrosine phosphorylation of human myelogenous leukemia cell line K562. Cytotechnology 25:191–195. doi:10.1023/A:1007982909932

    Article  CAS  Google Scholar 

  28. Kakugawa K, Tamai M, Imamura K, Miyamoto K, Miyoshi S, Morinaga Y et al (2002) Isolation of yeast Kurtzmanomyces sp. I-11, novel producer of mannosylerythritol lipid. Biosci Biotechnol Biochem 66:188–191. doi:10.1271/bbb.66.188

    Article  PubMed  CAS  Google Scholar 

  29. Kawashima H, Nakahara T, Oogaki M, Tabuchi T (1983) Extracellular production of a mannosylerythritol lipid by a mutant of Candida sp. from n-alkanes and triacylglycerols. J Ferment Technol 61:143–149

    CAS  Google Scholar 

  30. Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590. doi:10.1046/j.1365-2958.2003.03584.x

    Article  PubMed  CAS  Google Scholar 

  31. Kim H-S, Yoon BD, Choung DH, Oh HM, Katsuragi T, Tani Y (1999) Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp SY16. Appl Microbiol Biotechnol 52:713–721. doi:10.1007/s002530051583

    Article  PubMed  CAS  Google Scholar 

  32. Kim H-S, Jeon J-W, Kim B-H, Ahn C-Y, Oh H-M, Yoon B-D (2006) Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation. Appl Microbiol Biotechnol 70:391–396. doi:10.1007/s00253-005-0092-9

    Article  PubMed  CAS  Google Scholar 

  33. Kitamoto D, Akiba S, Hioki C, Tabuchi T (1990) Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica. Agric Biol Chem 54:31–36

    CAS  Google Scholar 

  34. Kitamoto D, Haneishi K, Nakahara T, Tabuchi T (1990) Production of mannosylerythritol lipids by Candida antarctica from vegetable oils. Agric Biol Chem 54:37–40

    CAS  Google Scholar 

  35. Kitamoto D, Fuzishiro T, Yanagishita H, Nakane T, Nakahara T (1992) Production of mannosylerythritol lipids as biosurfactants by resting cells of Candida antarctica. Biotechnol Lett 14:305–310. doi:10.1007/BF01022329

    Article  CAS  Google Scholar 

  36. Kitamoto D, Nemoto T, Yanagishita H, Nakane T, Kitamoto H, Nakahara T (1993) Fatty acid metabolism of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Jpn Oil Chem Soc 42:346–358

    CAS  Google Scholar 

  37. Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C, Nakahara T (1993) Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29:91–96. doi:10.1016/0168-1656(93)90042-L

    Article  CAS  Google Scholar 

  38. Kitamoto D, Yanagishita H, Hayara K, Kltamoto HK (1998) Contribution of a chain-shortening pathway to the biosynthesis of the fatty acids of mannosyierythritol lipid (biosurfactant) in the yeast Candida antarctica: effect of β-oxidation inhibitors on biosurfactant synthesis. Biotechnol Lett 20:813–818. doi:10.1023/A:1005347022247

    Article  CAS  Google Scholar 

  39. Kitamoto D, Ghosh SGO, Nakatani Y (2000) Formation of giant vesicle from diacylmannosylerythritols and their binding to concanavalin A. Chem Commun 2000:861–862. doi:10.1039/b000968g

    Article  Google Scholar 

  40. Kitamoto D, Ikegami T, Suzuki GT, Sasaki A, Takeyama Y, Idemoto Y et al (2001) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica). Biotechnol Lett 23:1709–1714. doi:10.1023/A:1012464717259

    Article  CAS  Google Scholar 

  41. Kitamoto D, Yanagishita H, Endo A, Nakaiwa M, Nakane M, Akiya T (2001) Remarkable antiagglomeration effect of a yeast biosurfactant, diacylmannosylerythritol, on ice-water slurry for cold thermal storage. Biotechnol Prog 17:362–365. doi:10.1021/bp000159f

    Article  PubMed  CAS  Google Scholar 

  42. Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants-from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201. doi:10.1263/jbb.94.187

    Article  PubMed  CAS  Google Scholar 

  43. Kitamoto D (2008) Naturally engineered glycolipid biosurfactants leading to distinctive self-assembling properties. Yakugaku Zasshi 128:695–706. doi:10.1248/yakushi.128.695

    Article  PubMed  CAS  Google Scholar 

  44. Konishi M, Imura T, Fukuoka T, Morita T, Kitamoto D (2007) A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system. Biotechnol Lett 29:473–480. doi:10.1007/s10529-006-9261-x

    Article  PubMed  CAS  Google Scholar 

  45. Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, Kitamoto D (2007) Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma. Appl Microbiol Biotechnol 75:521–531. doi:10.1007/s00253-007-0853-8

    Article  PubMed  CAS  Google Scholar 

  46. Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, Kitamoto D (2008) Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Appl Microbiol Biotechnol 78:37–46. doi:10.1007/s00253-007-1292-2

    Article  PubMed  CAS  Google Scholar 

  47. Matsuyama T, Nakagawa Y (1996) Bacterial wetting agents working incolonization of bacteria on surface environments. Colloids Surf B Biointerfaces 7:207–214. doi:10.1016/0927-7765(96)01300-8

    Article  CAS  Google Scholar 

  48. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2006) Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Appl Microbiol Biotechnol 73:305–313. doi:10.1007/s00253-006-0466-7

    Article  PubMed  CAS  Google Scholar 

  49. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto HK, Kitamoto D (2007) Characterization of the genus Pseudozyma by the formation of glycolipid biosurfactants, mannosylerythritol lipids. FEMS Yeast Res 7:286–292. doi:10.1111/j.1567-1364.2006.00154.x

    Article  PubMed  CAS  Google Scholar 

  50. Morita T, Konishi M, Fukuoka T, Imura T, Yamamoto S, Kitagawa M et al (2008) Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J Oleo Sci 57:123–131

    PubMed  CAS  Google Scholar 

  51. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2008) Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties. J Biosci Bioeng 105:493–502. doi:10.1263/jbb.105.493

    Article  PubMed  CAS  Google Scholar 

  52. Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198. doi:10.1016/j.envpol.2004.06.009

    Article  PubMed  CAS  Google Scholar 

  53. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166

    PubMed  CAS  Google Scholar 

  54. Rau U, Nguyen LA, Schulz S, Wray V, Nimtz M, Roeper H et al (2005) Formation and analysis of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol 66:551–5593. doi:10.1007/s00253-004-1672-9

    Article  PubMed  CAS  Google Scholar 

  55. Rau U, Nguyen LA, Roeper H, Koch H, Lang S (2005) Fed-batch bioreactor production of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol 68:607–613. doi:10.1007/s00253-005-1906-5

    Article  PubMed  CAS  Google Scholar 

  56. Rau U, Nguyen LA, Roeper H, Koch H, Lang S (2005) Downstream processing of mannosylerythritol lipids produced by Pseudozyma aphidis. Eur J Lipid Sci Technol 107:373–380. doi:10.1002/ejlt.200401122

    Article  CAS  Google Scholar 

  57. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618. doi:10.1093/jac/dkl024

    Article  PubMed  CAS  Google Scholar 

  58. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236. doi:10.1046/j.1462-2920.2001.00190.x

    Article  PubMed  CAS  Google Scholar 

  59. Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162. doi:10.1007/s002530051502

    Article  PubMed  CAS  Google Scholar 

  60. Shibahara M, Zhao X, Wakamatsu Y, Nomura N, Nakahara T, Jin C et al (2000) Mannosylerythritol lipid increases levels of galactoceramide in and neurite outgrowth from PC12 pheochromocytoma cells. Cytotechnology 33:247–251. doi:10.1023/A:1008155111024

    Article  CAS  PubMed  Google Scholar 

  61. Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology. Part 2. Application aspects. Biotechnol Adv 25:99–121. doi:10.1016/j.biotechadv.2006.10.004

    Article  PubMed  CAS  Google Scholar 

  62. Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146. doi:10.1016/j.tibtech.2004.01.010

    Article  PubMed  CAS  Google Scholar 

  63. Spoeckner S, Wray V, Nimtz M, Lang S (1999) Glycolipids of the smut fungus Ustilago maydis from cultivation on renewable resources. Appl Microbiol Biotechnol 51:33–39. doi:10.1007/s002530051359

    Article  CAS  Google Scholar 

  64. Tanaka A, Fukui S (1989) Metabolism of n-alkane. In: The yeast, vol 3, 2nd edn. Academic Press, London, p 261–287

  65. Ueno Y, Hirashima N, Inoh Y, Furuno T, Nakanishi M (2007) Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection. Biol Pharm Bull 30:169–172. doi:10.1248/bpb.30.169

    Article  PubMed  CAS  Google Scholar 

  66. Ueno Y, Inoh Y, Furuno T, Hirashima N, Kitamoto D, Nakanishi M (2007) NBD-conjugated biosurfactant (MEL-A) shows a new pathway for transfection. J Control Release 123:247–253. doi:10.1016/j.jconrel.2007.08.012

    Article  PubMed  CAS  Google Scholar 

  67. Vertesy L, Kurz M, Wink J, Noelken G (2002) Ustilipides, method for the production and the use thereof. US Patent 6,472,158

  68. Wakamatsu Y, Zhao X, Jin C, Day N, Shibahara M, Nomura N et al (2001) Mannosylerythritol lipid induces characteristics of neuronal differentiation in PC12 cells through an ERK-related signal cascade. Eur J Biochem 268:374–383. doi:10.1046/j.1432-1033.2001.01887.x

    Article  PubMed  CAS  Google Scholar 

  69. Wander RJA, Vreken P, Ferdiandusse S, Jansen GA, Waterham HR, van Roermunde CWT et al (2001) Peroxisomal fatty acid α- and β-oxida tion in humans: enzymology, peroxisomal metabolite transporters and peroxisomal diseases. Biochem Soc Trans 29:250–267. doi:10.1042/BST0290250

    Article  Google Scholar 

  70. Worakitkanchanakula W, Imurab T, Fukuokab T, Moritab T, Sakaia H, Abea M et al. (2008) Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Colloids Surf B Biointerfaces. doi:10.1016/j.colsurfb.2008.03.009

  71. Zhao X, Wakamatsu Y, Shibahara M, Nomura N, Geltinger C, Nakahara T et al (1999) Mannosylerythritol lipid is a potent inducer of apoptosis and differentiation of mouse melanoma cells in culture. Cancer Res 59:482–486

    PubMed  CAS  Google Scholar 

  72. Zhao X, Geltinger X, Kishikawa S, Ohshima S, Murata S, Nomura S et al (2000) Treatment of mouse melanoma cells with phorbol 12-myristate 13-acetate counteracts mannosylerythritollipid-induced growth arrest and apoptosis. Cytotechnology 33:123–130. doi:10.1023/A:1008129616127

    Article  CAS  PubMed  Google Scholar 

  73. Zhao X, Murata T, Ohno S, Day N, Song J, Nomura N et al (2001) Protein kinase Cα plays a critical role in mannosylerythritol lipid-induced differentiation of melanoma B16 Cells. J Biol Chem 276:39903–39910. doi:10.1074/jbc.M010281200

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Doble.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arutchelvi, J.I., Bhaduri, S., Uppara, P.V. et al. Mannosylerythritol lipids: a review. J Ind Microbiol Biotechnol 35, 1559–1570 (2008). https://doi.org/10.1007/s10295-008-0460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0460-4

Keywords

Navigation