Skip to main content
Log in

Whole cell microbial transformation in cloud point system

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Cloud point system, consisting of nonionic surfactant in an aqueous solution, has been developed as a novel medium for whole cell microbial transformation. The basic properties of cloud point system including phase separation and solubilization are introduced. The application of cloud point system for extractive microbial transformation is different from that of water-organic solvent two-phase partitioning system or aqueous two-phase system are discussed, which mainly focus on the biocompatibility of microorganism in a cloud point system and a downstream process of microbial transformation in cloud point system with oil-water-surfactant microemulsion liquid-liquid extraction for surfactant recovery and product separation. Finally, examples of whole cell microbial transformation in cloud point systems, especially in situ extraction of moderate polar substrate/product, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goldberg K, Schroer K, Lütz S, Liese A (2007) Biocatalytic ketone reduction–a powerful tool for the production of chiral alcohols–part II: whole-cell reductions. Appl Microbiol Biotechnol 76:249–255

    Article  CAS  Google Scholar 

  2. Hilterhaus L, Liese A (2007) Building blocks. Adv Biochem Eng Biotechnol 105:133–173

    CAS  Google Scholar 

  3. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(11):241–246

    Article  CAS  Google Scholar 

  4. Daugulis AJ (1997) Partitioning bioreactors. Curr Opin Biotechnol 8:169–l74

    Article  CAS  Google Scholar 

  5. Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19(11):457–462

    Article  CAS  Google Scholar 

  6. MacLeod CT, Daugulis AJ (2003) Biodegradation of polycyclic aromatic hydrocarbons in a two-phase partitioning bioreactor in the presence of a bioavailable solvent. Appl Microbiol Biotechnol 62:291–296

    Article  CAS  Google Scholar 

  7. Nikolova P, Ward OP (1993) Whole cell biocatalysis in nonconventional media. J Ind Microbiol 12:76–86

    Article  CAS  Google Scholar 

  8. Leon R, Fernandes P, Pinheiro HM, Cabral JMS (1998) Whole-cell biocatalysis in organic media. Enzyme Microb Technol 23:483–500

    Article  CAS  Google Scholar 

  9. Krishna SH (2002) Developments and trends in enzyme catalysis in nonconventional media. Biotechnol Adv 20:239–267

    Article  Google Scholar 

  10. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409(11):258–268

    Article  CAS  Google Scholar 

  11. de Bont JAM (1998) Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol 16:493–499

    Article  Google Scholar 

  12. Fernandes P, Ferreira BS, Cabral JMS (2003) Solvent tolerance in bacteria: role of efflux pumps and cross resistance with antibiotics. Int J Antimicrob Agents 22:211–216

    Article  CAS  Google Scholar 

  13. Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20:655–660

    Article  CAS  Google Scholar 

  14. Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformation in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973

    Article  CAS  Google Scholar 

  15. Inoue A, Horikoshi K (1989) A Pseudomonas putida thrives in high concentrations of toluene. Nature 338:264–266

    Article  CAS  Google Scholar 

  16. Aono R, Aibe K, Inoue A, Horikoshi K (1991) Preparation of organic solvent-tolerant mutants from E. coli K-12. Agric Biol Chem 55:1935–1938

    CAS  Google Scholar 

  17. Yamashita S, Satoi M, Iwasa Y, Honda K, Sameshima Y, Omasa T, Kato J, Ohtake H (2007) Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cell catalyst in anhydrous organic solvents. Appl Microbiol Biotechnol 74:761–767

    Article  CAS  Google Scholar 

  18. Zijlstra GM, de Gooijert CD, Trampert J (1998) Extractive bioconversions in aqueous two-phase systems. Curr Opin Biotechnol 9:171–176

    Article  CAS  Google Scholar 

  19. Sinha J, Dey PK, Panda T (2000) Aqueous two-phase: the system of choice for extractive fermentation. Appl Microbiol Biotechnol 54:476–486

    Article  CAS  Google Scholar 

  20. Pfruender H, Jones R, Weuster-Botz D (2006) Water immiscible ionic liquids as solvents for whole cell biocatalysis. J Biotechnol 124:182–190

    Article  CAS  Google Scholar 

  21. Pfruender H, Amidjojo M, Kragl U, Weuster-Botz D (2004) Efficient whole-cell biotransformation in a biphasic ionic liquid/water system. Angew Chem Int Ed 43:4529–4531

    Article  CAS  Google Scholar 

  22. Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256(4):1604–1607

    CAS  Google Scholar 

  23. Hinze WL, Pramauro E (1993) A critical review of surfactant-mediated phase separations (cloud-point extraction): theory and applications. Criti Rev Anal Chem 24(2):133–177

    Article  CAS  Google Scholar 

  24. Frankewich RP, Hinze WL (1994) Evaluation and optimization of the factors affecting nonionic surfactant-mediated phase separations. Anal Chem 66:944–954

    Article  CAS  Google Scholar 

  25. Tan H, Kamidate T, Watanabe H (1998) Aqueous micellar two-phase systems for protein separation. Anal Sci 14:875–888

    Article  Google Scholar 

  26. Quina FH, Hinze WL (1999) Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach. Ind Eng Chem Res 38:4150–4168

    Article  CAS  Google Scholar 

  27. Wang Z, Zhao F, Hao X, Chen D, Li D (2004) Microbial transformation hydrophobic compound in cloud point system. J Mol Catal B 27:147–153

    Article  CAS  Google Scholar 

  28. Wang Z (2007) The potential of cloud point system as a novel two-phase partitioning system for biotransformation. Appl Microbiol Biotechnol 75:1–10

    Article  CAS  Google Scholar 

  29. Wang Z (2006) Nonionic surfactant meditated cloud point extraction. Chem Eng (China) 34(4):9–12

    Google Scholar 

  30. Ren Y, Liu H, Yao X, Liu M, Hu Z, Fan B (2006) The accurate QSPR models for the prediction of nonionic surfactant cloud point. J Colloid Interface Sci 302:669–672

    Article  CAS  Google Scholar 

  31. Pandit NK, Kanjia J, Patel K, Pontikes DG (1995) Phase behavior of aqueous solutions containing nonionic surfactant-polyethylene glycol mixtures. Int J Pharm 122:27–33

    Article  CAS  Google Scholar 

  32. Al-Ghamdi AM, Nasr-El-Din HA (1997) Effect of oilfield chemicals on the cloud point of nonionic surfactants. Colloids Surf A 125:5–18

    Article  CAS  Google Scholar 

  33. Wang Z, Xu J-H, Zhang W, Zhuang B, Qi H (2008) Cloud point of Triton X-45 in aqueous solution. Colloids Surf B 61:118–122

    Article  CAS  Google Scholar 

  34. Qiao L, Easteal AJ (1998) The interaction between Triton X series surfactants and poly (ethylene glycol) in aqueous solutions. Colloid Polym Sci 276:313–320

    Article  CAS  Google Scholar 

  35. Pandit NK, Kanjia J (1996) Phase behavior of nonionic surfactant solutions in the presence of polyvinylpyrrolidone. Int J Pharm 141:197–203

    Article  CAS  Google Scholar 

  36. Guerrero-Martinez A, Montoro T, Vinas MH, Gonzalez-Gaitano G, Tardajos G (2007) Study of the interaction between a nonyl phenyl ether and β-cyclodextrin: declouding nonionic surfactant solutions by complexation. J Phys Chem B 111:1368–1376

    Article  CAS  Google Scholar 

  37. Collen A, Persson J, Linder M, Nakari-Setala T, Penttila M, Tjerneld F, Sivars U (2002) A novel two-step extraction method with detergent/polymer systems for primary recovery of the fusion protein endoglucanase I-hydrophobin I. Biochim Biophys Acta 1569:139–150

    CAS  Google Scholar 

  38. Wang Z, Xu J-H, Zhang W, Zhuang B, Qi H. In situ extraction of polar product of whole cell microbial transformation with polyethylene glycol induced cloud point system. In submission, Biotechnol Prog

  39. Mackay RA (1987) Solubilization. In: Schick MJ (Ed) Nonionic surfactants physical chemistry. Marcel Dekker, New York

    Google Scholar 

  40. Myers D (1999) Surfaces, interfaces and colloids: principles and applications, 2nd edn. Wiley, New York

    Google Scholar 

  41. Haddou B, Canselier JP, Gourdon C (2006) Cloud point extraction of phenol and benzyl alcohol from aqueous stream. Separ Purif Technol 50:114–121

    Article  CAS  Google Scholar 

  42. Sakulwongyai S, Trakultumupatam S, Scamehron JF, Oswan S, Christian SD (2000) Use of a surfactant coacervate phase to extraction of chlorinated aliphatic compounds from water: extraction of chlorinated ethanes and quantitative comparison to solubization in micelles. Langmuir 16(22):8226–8230

    Article  CAS  Google Scholar 

  43. Wang Z, Zhao F, Li D (2003) Solubilization of phenol in coacervate phase of cloud point extraction. J Chem Ind Eng (China) 54(10):1387–1390

    CAS  Google Scholar 

  44. Sjoblom J, Stenius P, Danielession I (1987) Phase equilibrium of nonionic surfactants and the formation of microemulsion. In: Schick MJ (ed) Nonionic surfactants physical chemistry. Marcel Dekker, New York

    Google Scholar 

  45. Wang Z, Zhao F, Li D (2003) Determination of solubilization of phenol of coacervate phase in cloud point extraction. Colloid Surf A 216(1–3):207–214

    Article  CAS  Google Scholar 

  46. Allen CCR, Boyd DR, Hempenstall F, Larkin MJ, Sharma ND (1999) Contrasting effects of a nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons to cis-dihydrodiols by soil bacteria. Appl Environ Microbiol 65(3):1335–1339

    CAS  Google Scholar 

  47. Mata-Sandoval JC, Karns J, Torrents A (2001) Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous phase and soil slurries. J Agric Food Chem 49:3296–3303

    Article  CAS  Google Scholar 

  48. Berti D, Randazzo D, Briganti F, Scozzafava A, Gennaro PD, Galli E, Bestetti G, Baglioni P (2002) Nonionic micelles promote whole cell bioconversion of aromatic substrates in an aqueous environment. Langmuir 18:6015–6020

    Article  CAS  Google Scholar 

  49. Miozzari GF, Niderberger P, Hulter R (1978) Permeabilization of microorganisms by Triton X-100. Anal Biochem 90:220–233

    Article  CAS  Google Scholar 

  50. Wang Z, Xu J-H, Wang L, Zhang W, Zhuang B, Qi H (2007) Improvement the tolerance of baker’s yeast to toxic substrate/product with cloud point system during the whole cell microbial transformation. Enzyme Microb Technol 41:296–301

    Article  CAS  Google Scholar 

  51. Halling PJ (1994) Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis. Enzyme Microb Technol 16:178–203

    Article  CAS  Google Scholar 

  52. Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30:81–87

    Article  CAS  Google Scholar 

  53. Malinowski JJ (2001) Two-phase partitioning bioreactors in fermentation technology. Biotechnol Adv 19:525–538

    Article  CAS  Google Scholar 

  54. Straathof AJJ (2003) Auxiliary phase guidelines for microbial biotransformations of toxic substrate into toxic product. Biotechnol Prog 19:755–762

    Article  CAS  Google Scholar 

  55. Schmid A, Kollmer A, Mathys RG (1998) Development toward large-scale bacterial bioprocesses in present of bulk amounts of organic solvents. Extremphile 2:249–256

    Article  CAS  Google Scholar 

  56. Fernandes P, Vidinha P, Ferreira T, Silvestre H, Cabral JMS, Prazeres DMF (2002) Use of free and immobilized Pseudomonas putida cells for the reduction of a thiophene derivative in organic media. J Mol Catal B 19/20:353–361

    Article  Google Scholar 

  57. Rosche B, Breuer M, Hauer B, Rogers PL (2005) Cells of Candida utilis for in vitro (R)-phenylacetylcarbinol production in an aqueous/octanol two-phase reactor. Biotechnol Lett 27:575–581

    Article  CAS  Google Scholar 

  58. Ibrahim NMA, Wheals BB (1996) Oligomeric separation of alkyphenol ethoxylate surfactant using aqueous acetonitrile eluents. J Chrimatog 731:171–177

    Article  CAS  Google Scholar 

  59. Willauer HD, Huddleston JG, Rogers RD (2002) Solute partitioning in aqueous biphasic systems composed of polyethylene glycol and salt: the partitioning of small neutral organic species. Ind Eng Chem Res 41:1892–1904

    Article  CAS  Google Scholar 

  60. Jiang J-S, Vane LM, Sikdar SK (1997) Recovery of VOCs from surfactant solutions by pervaporation. J Memb Sci 136:233–247

    Article  CAS  Google Scholar 

  61. Minuth T, Thommes J, Kula M-R (1996) A closed concept for purification of the membrane-bound cholesterol oxidase from Nocardia rhodochrous by surfactant-based cloud point extraction, organic-solvent extraction and anion-exchange chromatography. Biotechnol Appl Biochem 23:107–116

    CAS  Google Scholar 

  62. Wang Z, Xu J-H, Liang R, Qi H. A downstream process with microemulsion extraction for microbial transformation in cloud point system. Biochem Eng J. doi:10.1016/j.bej.2008.03.002

  63. Long A, Ward OP (1989) Biotransformation of aromatic aldehydes by Saccharomy cescerevisiae: investigation of reaction rates. J Ind Microbiol 4:49–53

    Article  CAS  Google Scholar 

  64. Wang Z, Zhao F, Chen D, Li D (2005) Cloud point system as a tool to improve the efficiency of biotransformation. Enzyme Microb Technol 36(4):589–594

    Article  CAS  Google Scholar 

  65. Wang Z, Zhao F, Chen D, Li D (2006) Biotransformation of phytosterol to produce androsta-diene-dione by resting cells Mycobacterium in cloud point system. Process Biochem 41(3):557–561

    Article  CAS  Google Scholar 

  66. Zhang W, Wang Z, Li W, Zhuang B, Qi H (2008) Production of L-phenylacetylcarbinol by microbial transformation in polyethylene glycol induced cloud point system. Appl Microbiol Biotechnol 78:233–239

    Article  CAS  Google Scholar 

  67. Flygare S, Larsson P-O (1989) Steroid transformation in aqueous two-phase systems: side-chain degradation of cholesterol by Mycobacterium sp. Enzyme Microb Technol 11:752–759

    Article  CAS  Google Scholar 

  68. Dias ACP, Cabal JMS, Pinheiro HM (1994) Sterol side-chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents. Enzyme Microb Technol 16:708–714

    Article  CAS  Google Scholar 

  69. Cabral JMS, Aires-Barros MR, Pinheiro HD, Prazeres MF (1997) Biotransformation in organic media by enzymes and whole cells. J Biotechnol 59:133–145

    Article  CAS  Google Scholar 

  70. Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabal JMS (2003) Microbial transformation of steroid compounds: recent developments. Enzyme Microbiol Technol 32:688–705

    Article  CAS  Google Scholar 

  71. Wang Z, Zhao F, Hao X, Chen D, Li D (2004) Model of bioconversion of cholesterol in cloud point system. Biochem Eng J 19:9–13

    Article  Google Scholar 

  72. Kanda T, Miyata N, Fukui T, Kawamoto T, Tanaka A (1998) Doubly entrapped baker’s yeast survives during the long-term stereoselective reduction of ethyl 3-oxobutanoate in an organic solvent. Appl Microbiol Biotechnol 49:377–381

    Article  CAS  Google Scholar 

  73. Griffin DR, Gainer JL, Carta G (2001) Asymmetric ketene reduction with immobilized yeast in hexane: biocatalyst deactivation and regeneration. Biotechnol Prog 17:304–310

    Article  CAS  Google Scholar 

  74. Wendhausen R Jr, Moran PJS, Joekes I, Rodrigues JAR (1998) Continuous process for large-scale preparation of chiral alcohols with baker’s yeast immobilized on chrysotile fibers. J Mol Catal B 5:69–73

    Article  Google Scholar 

  75. Chin-Joe I, Haberland J, Straathof AJJ, Jongejan JA, Liese A, Heijnen JJ (2002) Reduction of ethyl 3-oxobutanoate using non-growing baker’s yeast in a continuously operated reactor with cell retention. Enzyme Microb Technol 31:665–672

    Article  CAS  Google Scholar 

  76. Rogers RS, Hackman JR, Mercer V, Delancey GB (1999) Acetophenone tolerance, chemical adaptation, and residual bioreductive capacity of non-fermenting baker’s yeast (Saccharomyces cerevisiae) during sequential reactor cycles. J Ind Microbiol Biotechnol 22:108–114

    Article  CAS  Google Scholar 

  77. Rogers PL, Shin HS, Wang B (1997) Biotransformation for L-ephedrine production. Adv Biochem Eng Biotechnol 56:34–59

    Google Scholar 

  78. Tripathi CM, Agarwal SC, Basu S (1997) Production of L-phenylacetylcarbinol by fermentation. J Ferment Bioeng 84(6):487–492

    Article  CAS  Google Scholar 

  79. Rosche B, Breuer M, Hauer B, Rogers PL (2004) Biphasic aqueous/organic biotransformation of acetaldehyde and benzaldehyde by Zymomonas mobilis pyruvate decarboxylase. Biotechnol Bioeng 86(7):788–794

    Article  CAS  Google Scholar 

  80. Sandford V, Breuer M, Hauer B, Rogers P, Rosche B (2005) (R)-Phenylacetylcarbinol production in aqueous/organic two-phase systems using partially purified pyruvate decarboxylase from Candida Utilis. Biotechnol Bioeng 91(2):190–198

    Article  CAS  Google Scholar 

  81. Shin HS, Rogers PL (1995) Biotransformation of benzaldehyde to L-phenylacetylcarbinol, an intermediate in L-ephedrine production, by immobilized Candida utilis. Appl Microbiol Biotechnol 44:7–14

    Article  CAS  Google Scholar 

  82. Wang Z, Xu J-H, Wang L, Bao D, Qi H (2006) Thermodynamic equilibrium control of the enzymatic hydrolysis of penicillin G in a cloud point system without pH control. Ind Eng Chem Res 45(24):8049–8055

    Article  CAS  Google Scholar 

  83. van Hamme JD, Singh A, Ward OP (2006) Surfactants in microbiology and biotechnology: part 1 physiological aspects. Biotechnol Adv 24:604–620

    Article  Google Scholar 

  84. Singh A, van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2 application aspects. Biotechnol Adv 25:99–121

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The project was financially supported by the National Natural Science Foundation of China (No. 20676080) and the Science and Technology Expert Foundation of Lily Magnolia, Shanghai, China (No.2007B062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Wang.

Additional information

The similar abstract had been submitted for oral lecture of the 2007 SIM annual meeting at the Hyatt Regency, Denver, USA, from July 29 to August 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Xu, JH. & Chen, D. Whole cell microbial transformation in cloud point system. J Ind Microbiol Biotechnol 35, 645–656 (2008). https://doi.org/10.1007/s10295-008-0345-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0345-6

Keywords

Navigation