Skip to main content
Log in

The potential of cloud point system as a novel two-phase partitioning system for biotransformation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Although the extractive biotransformation in two-phase partitioning systems have been studied extensively, such as the water–organic solvent two-phase system, the aqueous two-phase system, the reverse micelle system, and the room temperature ionic liquid, etc., this has not yet resulted in a widespread industrial application. Based on the discussion of the main obstacles, an exploitation of a cloud point system, which has already been applied in a separation field known as a cloud point extraction, as a novel two-phase partitioning system for biotransformation, is reviewed by analysis of some topical examples. At the end of the review, the process control and downstream processing in the application of the novel two-phase partitioning system for biotransformation are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arrigo PD, Fuganti C, Fantoni GP, Servi S (1998) Extractive biocatalysis: a powerful tool in selectivity control in yeast biotransformations. Tetrahedron 54:15017–15026

    Article  Google Scholar 

  • Carvalho CML, Cabral JMS (2000) Reverse micelles as reaction media for lipases. Biochemie 82:1063–1085

    Article  CAS  Google Scholar 

  • Chen J, Spear SK, Huddlson JG, Roger RD (2005a) Polyethylene glycol and solutions of polyethylene glycol as a green reaction media. Green Chem 7:64–82

    Article  CAS  Google Scholar 

  • Chen D, Wang Z, Ge M, Jin Y, Ye W (2005b) Application of cloud point system in biological transforming. WO 2005014845

  • Chen D, Wang Z, Ge M, Jin Y, Ye W (2005c) A method of being biological transformation using resting cells in cloud point system. WO 2005052178

  • Chin-Joe I, Haberland J, Straathof AJJ, Jongejan JA, Liese A, Heijnen JJ (2002) Reduction of ethyl 3-oxobutanoate using non-growing baker’s yeast in a continuously operated reactor with cell retention. Enzyme Microb Technol 31:665–672

    Article  CAS  Google Scholar 

  • Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19(11):457–462

    Article  CAS  PubMed  Google Scholar 

  • den Hollander JL, Zomerdijk M, Straathof AJJ, van der Wielen LAM (2002) Continuous enzymatic penicillin G hydrolysis in countercurrent water–butyl acetate biphasic systems. Chem Eng Sci 57:1591–1598

    Article  Google Scholar 

  • den Hollander JL, Aversente A, Diender MB, Straathof AJJ, van der Wielen LAM (2005) Discrete countercurrent contacting: an experimental method for developing continuous countercurrent reactors. Ind Eng Chem Res 44:231–235

    Article  CAS  Google Scholar 

  • Dias ACP, Cabral JMS, Pinheiro HM (1994) Sterol side-chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents. Enzyme Microb Technol 16:708–714

    Article  CAS  PubMed  Google Scholar 

  • Fernandes P, Vidinha P, Ferreira T, Silvestre H, Cabral JMS, Prazeres DMF (2002) Use of free and immobilized Pseudomonas putida cells for the reduction of a thiophene derivative in organic media. J Mol Catal B Enzym 19–20:353–361

    Article  Google Scholar 

  • Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabal JMS (2003) Microbial transformation of steroid compounds: recent developments. Enzyme Microb Technol 32:688–705

    Article  CAS  Google Scholar 

  • Flygare S, Larsson P-O (1989) Steroid transformation in aqueous two-phase systems: side-chain degradation of cholesterol by Mycobacterium sp. Enzyme Microb Technol 11:752–759

    Article  CAS  Google Scholar 

  • Frankewlch RP, Hinze WL (1994) Evaluation and optimization of the factors affecting nonionic surfactant-mediated phase separations. Anal Chem 66:944–954

    Article  Google Scholar 

  • Ganong BR, Delmore JP (1991) Phase separation temperatures of mixtures of Triton X-114 and Trition X-45: application to protein separation. Anal Chem 193:35–37

    CAS  Google Scholar 

  • Griffin DR, Gainer JL, Carta G (2001) Asymmetric ketene reduction with immobilized yeast in hexane: biocatalyst deactivation and regeneration. Biotechnol Prog 17:304–310

    Article  CAS  PubMed  Google Scholar 

  • Groger H, Hummel W, Buchholz S, Drauz K, van Nguyen T, Rollmann C, Husken H, Abokitse K (2003) Practical asymmetric enzymatic reduction through discovery of a dehydrogenase-compatible biphasic reaction media. Org Lett 5(2):173–176

    Article  PubMed  CAS  Google Scholar 

  • Halling PJ (1994) Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis. Enzyme Microb Technol 16:178–206

    Article  CAS  PubMed  Google Scholar 

  • Hinze WL, Pramauro E (1993) A critical review of surfactant-mediated phase separations (cloud-point extraction): theory and applications. Crit Rev Anal Chem 24(2):133–177

    Article  CAS  Google Scholar 

  • Huddleston JG, Willauer HD, Griffin ST, Rogers RD (1999) Aqueous polymeric solutions as environmentally benign liquid/liquid extraction media. Ind Eng Chem Res 38:2523–2530

    Article  CAS  Google Scholar 

  • Ibrahim NMA, Wheals BB (1996) Oligomeric separation of alkylphenol ethoxylate surfactant on silica using aqueous acetonitrile eluents. J Chromatogr 731:171–177

    Article  CAS  Google Scholar 

  • Inoue A, Horikoshi K (1989) A Pseudomonas putida thrives in high concentrations of toluene. Nature 338:264–266

    Article  CAS  Google Scholar 

  • Jiang J, Vane LM, Sikdar SK (1997) Recovery of VOCs from surfactant solutions by pervaporation. J Membr Sci 136:233–237

    Article  CAS  Google Scholar 

  • Kaftzik N, Wasserscheid P, Kragl U (2002) Use of ionic liquids to increase the yield and enzyme stability in the β-galactosidase catalysed synthesis of N-acetyllactosamine. Org Process Res Dev 6:553–557

    Article  CAS  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(11):241–246

    Article  CAS  PubMed  Google Scholar 

  • Klyachko N, Levasgov AV (2003) Bioorganic synthesis in reverse micelles and related systems. Curr Opin Colloid Interface Sci 8:179–186

    Article  CAS  Google Scholar 

  • Krishna SH (2002) Developments and trends in enzyme catalysis in nonconventional media. Biotechnol Adv 20:239–267

    Article  PubMed  Google Scholar 

  • Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30:81–87

    Article  CAS  PubMed  Google Scholar 

  • Leon R, Fernandes P, Pinheiro HM, Cabral JMS (1998) Whole-cell biocatalysis in organic media. Enzyme Microb Technol 23:483–500

    Article  CAS  Google Scholar 

  • Lye GJ, Woodley JM (1997) Application of in situ product-removal techniques to biocatalytic processes. Trends Biotechnol 17:395–402

    Article  Google Scholar 

  • MacLeod CT, Daugulis AJ (2005) Interfacial effects in a two-phase partitioning bioreactor: degradation of polycyclic aromatic hydrocarbons (PAHs) by a hydrophobic Mycobacterium. Process Biochem 40:1799–1805

    Article  CAS  Google Scholar 

  • Malinowski JJ (2001) Two-phase partitioning bioreactors in fermentation technology. Biotechnol Adv 19:525–538

    Article  CAS  PubMed  Google Scholar 

  • Minuth T, Thommes J, Kula M-R (1996) A closed concept for purification of the membrane-bound cholesterol oxidase from Nocardia rhodochrous by surfactant-based cloud point extraction, organic-solvent extraction and anion-exchange chromatography. Biotechnol Appl Biochem 23:107–116

    CAS  Google Scholar 

  • Orlich B, Schomacker R (2002) Enzyme catalysis in reverse micelles. Adv Biochem Eng Biotechnol 75:186–208

    Google Scholar 

  • Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids-advantages beyond green technology. Curr Opin Biotechnol 14:432–437

    Article  CAS  PubMed  Google Scholar 

  • Pfruender H, Jones R, Weuster-Botz D (2006) Water immiscible ionic liquids as solvents for whole cell biocatalysis. J Biotechnol 124:182–190

    Article  CAS  PubMed  Google Scholar 

  • Poole CF (2004) Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. J Chromatogr A 1037:49–82

    Article  CAS  PubMed  Google Scholar 

  • Pretti C, Chiappe C, Pieraccini D, Gregori M, Abramo F, Monni G, Intorre L (2006) Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem 8:238–240

    Article  CAS  Google Scholar 

  • Prichanont S, Leak DJ, Stuckey DC (2000) Chiral epoxide production using Mycobacterium solubilized in a water-in-oil microemulsion. Enzyme Microb Technol 27:134–142

    Article  CAS  PubMed  Google Scholar 

  • Quina F, Hinze WL (1999) Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach. Ind Eng Chem Res 38:4150–4168

    Article  CAS  Google Scholar 

  • Rogers RS, Hackman JR, Mercer V, DeLancey GB (1999) Acetophenone tolerance, chemical adaptation, and residual bioreductive capacity of non-fermenting baker’s yeast (Saccharomyces cerevisiae) during sequential reactor cycles. J Ind Microbiol Biotechnol 22:108–114

    Article  CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Natural 409(11):258–268

    Article  CAS  Google Scholar 

  • Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278

    Article  CAS  Google Scholar 

  • Sikalos TI, Paleologos EK (2005) Cloud point extraction coupled with microwave or ultrasonic assisted back extraction as a preconcentration step prior to gas chromatography. Anal Chem 77:2544–2549

    Article  CAS  PubMed  Google Scholar 

  • Sinha J, Dey PK, Panda T (2000) Aqueous two-phase: the system of choice for extractive fermentation. Appl Microbiol Biotechnol 54:476–486

    Article  CAS  PubMed  Google Scholar 

  • Straathof AJJ (2003) Auxiliary phase guidelines for microbial biotransformations of toxic substrate into toxic product. Biotechnol Prog 19:755–762

    Article  CAS  PubMed  Google Scholar 

  • Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  CAS  PubMed  Google Scholar 

  • van Rantwijk F, Lau RM, Sheldon RA (2003) Biocatalytic biotransformation in ionic liquids. Trends Biotechnol 21(3):131–138

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Zhao F, Li D (2003) Determination of solubilization of phenol at coacervate phase of cloud point extraction. Colloids Surf A 216:207–214

    Article  CAS  Google Scholar 

  • Wang Z, Zhao F, Hao X, Chen D, Li D (2004a) Microbial transformation hydrophobic compound in cloud point system. J Mol Catal B Enzym 27:147–153

    Article  CAS  Google Scholar 

  • Wang Z, Zhao F, Hao X, Chen D, Li D (2004b) Model of bioconversion of cholesterol in cloud point system. Biochem Eng J 19:9–13

    Article  CAS  Google Scholar 

  • Wang Z, Zhao F, Chen D, Li D (2005) Cloud point system as a tool to improve the efficiency of biotransformation. Enzyme Microb Technol 36(4):589–594

    Article  CAS  Google Scholar 

  • Wang Z, Zhao F, Chen D, Li D (2006a) Biotransformation of phytosterol to produce androsta-diene-dione by resting cells Mycobacterium in cloud point system. Process Biochem 41(3):557–561

    Article  CAS  Google Scholar 

  • Wang Z, Guo Y, Bao D, Qi H (2006b) Direct extraction of phenylacetic acid from immobilised enzymatic hydrolysis of penicillin G with cloud point extraction. J Chem Technol Biotechnol 81(4):560–565

    Article  CAS  Google Scholar 

  • Wang Z, Xu J-H, Wang L, Bao D, Qi H (2006c) Thermodynamic equilibrium control of the enzymatic hydrolysis of penicillin G in a cloud point system without pH control. Ind Eng Chem Res 45(24):8049–8055

    Article  CAS  Google Scholar 

  • Wang L, Wang Z, Xu J-H, Bao D, Qi H (2006d) An eco-friendly and sustainable process for enzymatic hydrolysis of penicillin G in cloud point system. Bioprocess Biosyst Eng 29(3):157–162

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang L, Xu J-H, Qi H (2007) Enzymatic hydrolysis of penicillin G to 6-aminopenicillanic acid in cloud point system with discrete countercurrent experiment. Enzyme Microb Technol (in press). DOI 10.1016/j.enzmictec.2006.12.010

  • Wendhausen R Jr, Moran PJS, Joekes I, Rodrigues JAR (1998) Continuous process for large-scale preparation of chiral alcohols with baker’s yeast immobilized on chrysotile fibers. J Mol Catal B Enzym 5:69–73

    Article  CAS  Google Scholar 

  • Wyss A, Seitert H, von Stockar U, Marison IW (2005) Novel reactive perstraction system applied to the hydrolysis of penicillin G. Biotechnol Bioeng 91(2):227–236

    Article  CAS  PubMed  Google Scholar 

  • Zaks A, Klibanov AM (1984) Enzymatic catalysis in organic media at 100 degrees C. Science 224:1249–1251

    Article  CAS  PubMed  Google Scholar 

  • Zijlstra GM, de Gooijert CD, Trampert J (1998) Extractive bioconversions in aqueous two-phase systems. Curr Opin Biotechnol 9:171–176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The project was financially supported by the National Natural Science Foundation of China (Grant No.20676080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z. The potential of cloud point system as a novel two-phase partitioning system for biotransformation. Appl Microbiol Biotechnol 75, 1–10 (2007). https://doi.org/10.1007/s00253-007-0873-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0873-4

Keywords

Navigation