Skip to main content
Log in

Extractive biodegradation of diphenyl ethers in a cloud point system: Pollutant bioavailability enhancement and surfactant recycling

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The biodegradation of diphenyl ethers (DEs) in the environment is limited by their high hydrophobicity. The enhancement of DE bioavailability by a cloud point system (CPS) was investigated in this study. Three CPSs (i.e., Triton X-114, Triton X-114 + Triton X-45, and Brij30 + TMN-3) were tested to promote DE biodegradation. Biocompatibility tests showed that the biodegradation of DE and 4-bromodiphenyl ether (4-BDE) was inhibited by TX-114, unaffected by TX-114 + TX-45, and promoted by Brij30 + TMN-3 over 48 h of cultivation with Cupriavidus basilensis and 4% (w/v) nonionic surfactants. Further optimization with 2% (w/v) Brij30 + TMN-3 yielded residual DE and 4-BDE quantities of 143 and 154 mg/L, respectively, lower than quantities in the control. During degradation, DE content did not decrease in the dilute phase, but sharply decreased in the coacervate phase, indicating that the DEs gradually diffused and transferred from the coacervate phase to the dilute phase for degradation by microbial cells. This behavior also enhanced the bioavailability of DEs in the CPS. By removing the cell-rich dilute phase and adding fresh degradation medium and DE to the coacervate phase, surfactants were successfully recovered and reused twice without affecting DE biodegradation. Results demonstrated that a CPS with 2% (w/v) Brij30 + TMN-3 not only enhanced the bioavailability of DEs, but also decreased the treatment cost through surfactant recycling, which is beneficial for large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Darnerud, P. O. (2003) Toxic effects of brominated flame retardants in man and in wildlife. Environ. Int. 29: 841–853.

    Article  CAS  Google Scholar 

  2. Hites, R. A. (2004) Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environ. Sci. Technol. 38: 945–956.

    Article  CAS  Google Scholar 

  3. Darnerud, P. O., G. S. Eriksen, T. Johannesson, P. B. Larsen, and M. Viluksela (2001) Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environ. Health Persp. 109: 49–68.

    Article  CAS  Google Scholar 

  4. Li, Y. F., W. L. Ma, and M. Yang (2015) Prediction of gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in global air: A theoretical study. Atmos. Chem. Phys. 15: 1669–1681.

    Article  CAS  Google Scholar 

  5. Deng, W. J., J. S. Zheng, X. H. Bi, J. M. Fu, and M. H. Wong (2007) Distribution of PBDEs in air particles from an electronic waste recycling site compared with Guangzhou and Hong Kong, South China. Environ. Int. 33: 1063–1069.

    Article  CAS  Google Scholar 

  6. Moon, H.-B., K. Kannan, S.-J. Lee, and M. Choi (2007) Polybrominated diphenyl ethers (PBDEs) in sediment and bivalves from Korean coastal waters. Chemosphere 66: 243–251.

    Article  CAS  Google Scholar 

  7. Lv, J., Y. Zhang, X. Zhao, C. Zhou, C. Guo, Y. Luo, W. Meng, G. Zou, and J. Xu (2015) Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in sediments of Liaohe River: Levels, spatial and temporal distribution, possible sources, and inventory. Environ. Sci. Pollut. Res. Int. 22: 4256–4264.

    Article  CAS  Google Scholar 

  8. Moeckel, C., L. Nizzetto, A. Di Guardo, E. Steinnes, M. Freppaz, G. Filippa, P. Camporini, J. Benner, and K. C. Jones (2008) Persistent organic pollutants in boreal and montane soil profiles: Distribution, evidence of processes and implications for global cycling. Environ. Sci. Technol. 42: 8374–8380.

    Article  CAS  Google Scholar 

  9. Huang, H., S. Wang, J. Lv, X. Xu, and S. Zhang (2016) Influences of artificial root exudate components on the behaviors of BDE-28 and BDE-47 in soils: Desorption, availability, and biodegradation. Environ. Sci. Pollut. Res. Int. 23: 7702–7711.

    Article  Google Scholar 

  10. Zhao, Y., Y. Li, X. Qin, Q. Lou, and Z. Qin (2016) Accumulation of polybrominated diphenyl ethers in the brain compared with the levels in other tissues among different vertebrates from an ewaste recycling site. Environ. Pollut. 218: 1334–1341.

    Article  CAS  Google Scholar 

  11. Kim, Y.-M., K. Murugesan, Y.-Y. Chang, E.-J. Kim, and Y.-S. Chang (2012) Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. J. Chem. Technol. Biotechnol. 87: 216–224.

    Article  CAS  Google Scholar 

  12. Pan, Y., D. C. W. Tsang, Y. Wang, Y. Li, and X. Yang (2016) The photodegradation of polybrominated diphenyl ethers (PBDEs) in various environmental matrices: Kinetics and mechanisms. Chem. Eng. J. 297: 74–96.

    Article  CAS  Google Scholar 

  13. Tang, S., H. Yin, S. Chen, H. Peng, J. Chang, Z. Liu, and Z. Dang (2016) Aerobic degradation of BDE-209 by Enterococcus casseliflavus: Isolation, identification and cell changes during degradation process. J. Hazard Mater. 308: 335–342.

    Article  CAS  Google Scholar 

  14. Chen, X., G. Chen, M. Qiu, G. Sun, J. Guo, and M. Xu (2014) Synergistic degradation of deca-BDE by an enrichment culture and zero-valent iron. Environ. Sci. Pollut. Res. Int. 21: 7856–7862.

    Article  CAS  Google Scholar 

  15. Gerecke, A. C., P. C. Hartmann, N.V. Heeb, H.-P. E. Kohler, W. Giger, P. Schmid, M. Zennegg, and M. Kohler (2005) Anaerobic degradation of decabromodiphenyl ether. Environ. Sci. Technol. 39: 1078–1083.

    Article  CAS  Google Scholar 

  16. Zhu, B., X. Xia, S. Wu, X. Lu, and X. A. Yin (2016) Microbial bioavailability of 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) in natural sediments from major rivers of China. Chemosphere 153: 386–393.

    Article  CAS  Google Scholar 

  17. Chen, L., W. Zhang, R. Zhang, K. Lin, L. He, and L. Wu (2015) The bioavailability and adverse impacts of lead and decabromodiphenyl ether on soil microbial activities. Environ. Sci. Pollut. Res. Int. 22: 12141–12149.

    Article  CAS  Google Scholar 

  18. Liu, M., S. Tian, P. Chen, and L. Zhu (2011) Predicting the bioavailability of sediment-associated polybrominated diphenyl ethers using a 45-d sequential Tenax extraction. Chemosphere 85: 424–431.

    Article  CAS  Google Scholar 

  19. Zamir, S. M., S. Babatabar, and S. A. Shojaosadati (2015) Styrene vapor biodegradation in single-and two-liquid phase biotrickling filters using Ralstonia eutropha. Chem. Eng. J. 268: 21–27.

    Article  CAS  Google Scholar 

  20. Song, Y., F. Wang, Y. R. Bian, M. Ye, and X. Jiang (2015) Using a two-liquid-phase system to investigate the biodegradation of trichlorobenzenes. Pedosphere. 25: 169–176.

    Article  Google Scholar 

  21. Zhang, Y., F. Wang, X. Yang, C. Gu, F. O. Kengara, Q. Hong, Z. Lv, and X. Jiang (2011) Extracellular polymeric substances enhanced mass transfer of polycyclic aromatic hydrocarbons in the two-liquid-phase system for biodegradation. Appl. Microbiol. Biotechnol. 90: 1063–1071.

    Article  CAS  Google Scholar 

  22. Muñoz, R., S. Villaverde, B. Guieysse, and S. Revah (2007) Two-phase partitioning bioreactors for treatment of volatile organic compounds. Biotechnol. Adv. 25: 410–422.

    Article  Google Scholar 

  23. Liu, J. and X. Cao (2013) Biodegradation of microcrystalline cellulose in pH-pH recyclable aqueous two-phase systems with water-soluble immobilized cellulase. Biochem. Eng. J. 79: 136–143.

    Article  CAS  Google Scholar 

  24. Pan, T., T. Deng, X. Zeng, W. Dong, and S. Yu (2016) Extractive biodegradation and bioavailability assessment of phenanthrene in the cloud point system by Sphingomonas polyaromaticivorans. Appl. Microbiol. Biotechnol. 100: 431–437.

    Article  CAS  Google Scholar 

  25. Castillo, A. S. R., S. Guiheneuf, R. Le Guevel, P.-F. Biard, L. Paquin, A. Amrane, and A. Couvert (2016) Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor. J. Hazard. Mater. 307: 221–230.

    Article  Google Scholar 

  26. Zhang, W., Z. Wang, W. Li, B. Zhuang, and H. Qi (2008) Production of L-phenylacetylcarbinol by microbial transformation in polyethylene glycol-induced cloud point system. Appl. Microbiol. Biot. 78: 233–239.

    Article  CAS  Google Scholar 

  27. Dai, Z., Z. Wang, J. H. Xu, and H. Qi (2010) Assessing bioavailability of the solubilization of organic compound in nonionic surfactant micelles by dose-response analysis. Appl. Microbiol. Biot. 88: 327–339.

    Article  CAS  Google Scholar 

  28. Wang, Z., J. H. Xu, and D. Chen (2008) Whole cell microbial transformation in cloud point system. J. Ind. Microbiol. Biotechnol. 35: 645–656.

    Article  CAS  Google Scholar 

  29. Liang, R., Z. Wang, J. H. Xu, W. Li, and H. Qi (2009) Novel polyethylene glycol induced cloud point system for extraction and back-extraction of organic compounds. Sep. Purif. Technol. 66: 248–256.

    Article  CAS  Google Scholar 

  30. Dhamole, P. B., Z. Wang, Y. Liu, B. Wang, and H. Feng (2012) Extractive fermentation with non-ionic surfactants to enhance butanol production. Biomass Bioenerg. 40: 112–119.

    Article  CAS  Google Scholar 

  31. Melchert, W. R. and F. R. P. Rocha (2016) Cloud point extraction in flow-based systems. Rev Anal. Chem. 35: 41–52.

    Article  CAS  Google Scholar 

  32. Kaykhaii, M. and E. Ghasemi (2016) Micro-cloud point extraction for preconcentration of Aspirin in commercial tablets prior to spectrophotometric determination. J. Anal. Chem. 71: 844–848.

    Article  CAS  Google Scholar 

  33. Hinze, W. L. and E. Pramauro (1993) A critical-review of surfactant-mediated phase separations (cloud-point extractions) -Theory and applications. Crit. Rev. Anal. Chem. 24: 133–177.

    Article  CAS  Google Scholar 

  34. Wang, Z. and Z. Dai (2010) Extractive microbial fermentation in cloud point system. Enz. Microb. Technol. 46: 407–418.

    Article  CAS  Google Scholar 

  35. Wang, Z. (2007) The potential of cloud point system as a novel two-phase partitioning system for biotransformation. Appl. Microbiol. Biot. 75: 1–10.

    Article  CAS  Google Scholar 

  36. Wang, Z., F. Zhao, D. Chen, and D. Li (2005) Cloud point system as a tool to improve the efficiency of biotransformation. Enz. Microb. Technol. 36: 589–594.

    Article  CAS  Google Scholar 

  37. Pan, T., Z. Wang, J.-H. Xu, Z. Wu, and H. Qi (2010) Stripping of nonionic surfactants from the coacervate phase of cloud point system for lipase separation by Winsor II microemulsion extraction with the direct addition of alcohols. Proc. Biochem. 45: 771–776.

    Article  CAS  Google Scholar 

  38. Wang, Z., J. H. Xu, R. Liang, and H. Qi (2008) A downstream process with microemulsion extraction for microbial transformation in cloud point system. Biochem. Eng. J. 41: 24–29.

    Article  Google Scholar 

  39. Shen, L., X. Zhang, M. Liu, and Z. Wang (2014) Transferring of red Monascus pigments from nonionic surfactant to hydrophobic ionic liquid by novel microemulsion extraction. Sep. Purif. Technol. 138: 34–40.

    Article  CAS  Google Scholar 

  40. Shen, L., X. Zhang, M. Liu, and Z. Wang (2014) Microemulsion extraction of Monascus pigments from nonionic surfactant using high polarity of diethyl ether as excess oil phase. Separ. Sci. Technol. 49: 2346–2351.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, T., Liu, C., Xin, Q. et al. Extractive biodegradation of diphenyl ethers in a cloud point system: Pollutant bioavailability enhancement and surfactant recycling. Biotechnol Bioproc E 22, 631–636 (2017). https://doi.org/10.1007/s12257-017-0085-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0085-4

Keywords

Navigation