Skip to main content

Advertisement

Log in

Microbial diversity and genomics in aid of bioenergy

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In view of the realization that fossil fuels reserves are limited, various options of generating energy are being explored. Biological methods for producing fuels such as ethanol, diesel, hydrogen (H2), methane, etc. have the potential to provide a sustainable energy system for the society. Biological H2 production appears to be the most promising as it is non-polluting and can be produced from water and biological wastes. The major limiting factors are low yields, lack of industrially robust organisms, and high cost of feed. Actually, H2 yields are lower than theoretically possible yields of 4 mol/mol of glucose because of the associated fermentation products such as lactic acid, propionic acid and ethanol. The efficiency of energy production can be improved by screening microbial diversity and easily fermentable feed materials. Biowastes can serve as feed for H2 production through a set of microbial consortia: (1) hydrolytic bacteria, (2) H2 producers (dark fermentative and photosynthetic). The efficiency of the bioconversion process may be enhanced further by the production of value added chemicals such as polydroxyalkanoate and anaerobic digestion. Discovery of enormous microbial diversity and sequencing of a wide range of organisms may enable us to realize genetic variability, identify organisms with natural ability to acquire and transmit genes. Such organisms can be exploited through genome shuffling for transgenic expression and efficient generation of clean fuel and other diverse biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alcalde M, Ferrer M, Plou FJ, Ballesteros A (2006) Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24:281–287

    Article  CAS  PubMed  Google Scholar 

  2. Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485

    Article  CAS  PubMed  Google Scholar 

  3. Angenent LT (2007) Energy biotechnology: beyond the general lignocellulose-to-ethanol pathway. Curr Opin Biotechnol 18:191–192

    Article  CAS  Google Scholar 

  4. Antonopoulou G, Gavala HN, Siadas IV, Angelopoulos K, Lyberatos G (2007) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol. doi:10.1016/j.biortech.2006/.11.048

  5. Ashby GA, Dilworth MJ, Thorneley RN (1987) Klebsiella pneumoniae nitrogenase. Inhibition of hydrogen evolution by ethylene and the reduction of ethylene to ethane. Biochem J 247:547–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bagai R, Madamwar D (1999) Long-term photo-evolution of hydrogen in a packed bed reactor containing a combination of Phormidium valderianum, Halobacterium halobium, and Escherichia coli immobilized in polyvinyl alcohol. Int J Hydrogen Energy 24:311–317

    Article  CAS  Google Scholar 

  7. Bálint B, Bagi Z, Tóth A, Rákhely G, Perei K, Kovács KL (2005) Utilization of keratin-containing biowaste to produce biohydrogen. Appl Microbiol Biotechnol 69:404–410

    Article  PubMed  CAS  Google Scholar 

  8. Balthasar W (1984) Hydrogen production and technology: today, tomorrow and beyond. Int J Hydrogen Energy 9:649–668

    Article  CAS  Google Scholar 

  9. Beg QK, Bhushan B, Kapoor M, Hoondal GS (2000) Effect of amino acids on production of xylanase and pectinase from Streptomyces sp. QG-11–3. World J Microbiol Biotechnol 16:211–213

    Article  CAS  Google Scholar 

  10. Beneman JR (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103

    Article  Google Scholar 

  11. Bicelli PL (1986) Hydrogen: a clean energy source. Int J Hydrogen Energy 11:555–562

    Article  Google Scholar 

  12. Boon N, Top EM, Verstraete W, Siciliano SD (2003) Bioaugmentation as a tool to protect the structure and function of an activated sludge microbial community against a 3-chloroaniline shock load. Appl Environ Microbiol 69:1511–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102

    Article  CAS  Google Scholar 

  14. Brosseau JD, Zajic JE (1982) Hydrogen gas production with Citrobacter intermedius and Clostridium pasteurianum. J Chem Tech Biotechnol 32:496

    Article  CAS  Google Scholar 

  15. Buranakarl L, Ito K, Izaki K, Takahashi H (1988) Purification and characterization of a raw starch-digestive amylase from non-sulfur purple photosynthetic bacterium. Enzyme Microb Technol 10:173–179

    Article  CAS  Google Scholar 

  16. Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. Trans ASAE 44:1429–1436

    Article  CAS  Google Scholar 

  17. Chan YK, Nelson LM, Knowles R (1980) Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium. Can J Microbiol 26:1126–1131

    Article  CAS  PubMed  Google Scholar 

  18. Chandra R, Raj A, Purohit HJ, Kapley A (2007) Characterisation and optimization of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere 67:839–846

    Article  CAS  PubMed  Google Scholar 

  19. Chang JS, Lee KS, Lin PJ (2002) Biohydrogen production with fixed bed bioreactors. Int J Hydrogen Energy 27:1167–1174

    Article  CAS  Google Scholar 

  20. Chen CC, Lin CY, Lin MC (2002) Acid-base enrichment enhances anaerobic hydrogen process. Appl Micro Biotechnol 58:224–228

    Article  Google Scholar 

  21. Chen CC, Lin CY (2003) Using sucrose as a substrate in an anaerobic hydrogen producing reactor. Adv Environ Res 7:695–699

    Article  CAS  Google Scholar 

  22. Cheong D-Y, Hansen CL, Stevens DK (2007) Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor. Biotechnol Bioeng 96:421–432

    Article  CAS  PubMed  Google Scholar 

  23. Christensen CH, Jørgensen B, Rass-Hansen J, Egeblad K, Madsen R, Klitgaard SK, Hansen SM, Hansen MR, Andersen HC, Riisager A (2006) Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst. Angew Chem Int Ed 45:4648–4651

    Article  CAS  Google Scholar 

  24. Das D, Verziroglu TN (2001) Hydrogen production by biological processes: A survey of literature. Int J Hydrogen Energy 26:13–28

    Article  CAS  Google Scholar 

  25. De Clerck E, De Vos P (2006) Genotypic diversity among Bacillus licheniformis strains from various sources. FEMS Microbiol Lett 231:91–98

    Article  CAS  Google Scholar 

  26. De Luchi MA (1989) Hydrogen vehicles: an evaluation of fuel storage, performance, safety, environmental impacts, and cost. Int J Hydrogen Energy 14:81–130

    Article  Google Scholar 

  27. Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 5:471–482

    Article  Google Scholar 

  28. Demirbas A (2003) Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manage 44:2093–2109

    Article  CAS  Google Scholar 

  29. Demirbas A (2004) Bioenergy, global warming, and environmental impacts. Energy Sources 26:225–236

    Article  CAS  Google Scholar 

  30. Demirbas A (2005) Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energy Combus Sci 31:466–487

    Article  CAS  Google Scholar 

  31. Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combus Sci 33:1–18

    Article  CAS  Google Scholar 

  32. Dhawan S, Kuhad RC (2002) Effect of aminoacids and vitamins on laccase production bt the bird’s nest fungus Cyathus biulleri. Bioresour Technol 84:35–38

    Article  CAS  PubMed  Google Scholar 

  33. Du W, Xu Y, Liu D, Zeng J (2004) Comparative study on lipase catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzymat 30:125–129

    Article  CAS  Google Scholar 

  34. Erickson RJ (1976) Industrial applications of the bacilli: a review and prospectus. In: Schlesinger D (ed)Microbiology. American Society for Microbiology, Washington, pp 406–419

    Google Scholar 

  35. Esper B, Badura A, Rögner M (2006) Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci 11:543–549

    Article  CAS  PubMed  Google Scholar 

  36. European Commission, (EC) (2004) Promoting biofuels in Europe. Bruxelles, Belgium: European Commission, Directorate-General for Energy and Transport. B-1049. Available from: http://europa.eu.int/comm/dgs/energy_transport/index_en.html

  37. Eveleigh DE (1981) The microbial production of industrial chemicals. Sci Am 245:155–178

    Article  Google Scholar 

  38. Evvyernie D, Yamazaki S, Morimoto K, Karita S, Kimura T, Sakka K, Ohmiya K (2000) Identification and characterization of Clostridium paraputricum M-21, a chitinolytic, mesophilic and hydrogen producing bacterium. J Biosci Bioeng 89:596–601

    Article  CAS  PubMed  Google Scholar 

  39. Fang HHP, Liu H (2002) Effect of pH on hydrogen production from glucose by mixed culture. Bioresour Technol 82:87–93

    Article  CAS  PubMed  Google Scholar 

  40. Fang HHP, Liu H, Zhang T (2002) Characterisation of a hydrogen-producing granular sludge. Biotechnol Bioeng 78:44–52

    Article  CAS  PubMed  Google Scholar 

  41. Fascetti E, D’Addario E, Todini O, Robertiello A (1998) Photosynthetic hydrogen evolution with volatile organic acid derived from the fermentation of source selected municipal wastes. Int J Hydrogen Energy 23:753–760

    Article  CAS  Google Scholar 

  42. Friedrich J, Gradisar H, Mandin D, Chaumont JP (1999) Screening fungi for synthesis of keratinolytic enzymes. Lett Appl Microbiol 28:127–130

    Article  CAS  Google Scholar 

  43. Gavala HN, Skiadas IV, Ahring BK (2006) Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int J Hydrogen Energy 31:1164–1175

    Article  CAS  Google Scholar 

  44. Gest H, Kamen M (1949) Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109:558

    Article  CAS  PubMed  Google Scholar 

  45. Goodwin S, Conrad R, Zeikus JG (1988) Influence of pH on microbial hydrogen, metabolism in diverse sedimentary ecosystems. Appl Environ Microbiol 54:590–593

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gregory DP, Pangborn JB (1976) Hydrogen Energy. Ann Rev Energy 1:279–309

    Article  CAS  Google Scholar 

  47. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  PubMed  CAS  Google Scholar 

  48. Hansen AC, Zhang Q, Lyne PWL (2005) Ethanol–diesel fuel blends—a review. Bioresour Technol 96:277–285

    Article  CAS  PubMed  Google Scholar 

  49. Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206

    Article  CAS  PubMed  Google Scholar 

  50. Heyndrickx M, Vansteenbeeck A, De Vos P, De Ley J (1986) Hydrogen gas production from continuous fermentation of glucose in a minimal medium with Clostridium butyricum LMG 1213t1. Syst Appl Microbiol 8:239–244

    Article  CAS  Google Scholar 

  51. Heyndrickx M, De Vos P, De Ley J (1991) Fermentation of d-xylose by Clostridium butyricum LMG 1213t sub(1) in chemostats. Enzyme Microb Technol 13:893–897

    Article  CAS  Google Scholar 

  52. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  53. Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu CY, Lin LP (2003) Characterization and purification of hydrolytic enzymes in Sinorhizobium fredii CCRC15769. World J Microbiol Biotechnol 19:515–522

    Article  CAS  Google Scholar 

  55. Huang SD, Secor CK, Ascione R, Zweig RM (1985) Hydrogen production by non-photosynthetic bacteria. Int J Hydrogen Energy 10:227–231

    Article  CAS  Google Scholar 

  56. Huang T-Y, Duan K-J, Huang S-Y, Chen CW (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33:701–706

    Article  CAS  PubMed  Google Scholar 

  57. Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84:619–626

    Article  CAS  PubMed  Google Scholar 

  58. Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2005) Continuous fermentative hydrogen production from sucrose and sugarbeet. Int J Hydrogen Energy 30:471–483

    Article  CAS  Google Scholar 

  59. Hustede E, Steinbuchel A, Schlegel HG (1993) Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria. Appl Microbiol Biotechnol 39:87–93

    Article  CAS  Google Scholar 

  60. IEA (International Energy Agency) (2004) Biofuels for transport: a international perspective. 9, rue de la Fe´ de´ ration, 75739 Paris, cedex 15, France (available from: http://www.iea.org)

  61. Ike A, Murakawa T, Kawaguchi H, Hirata K, Miyamoto K (1999) Photoproduction of hydrogen from raw starch using a halophilic bacterial community. J Biosci Bioeng 88:72–77

    Article  CAS  PubMed  Google Scholar 

  62. Iyer P, Bruns MA, Zhang H, Ginkel SV, Logan BE (2004) H2-producing bacterial communities from a heat-treated soil inoculum. Appl Microbiol Biotechnol 66:166–173

    Article  CAS  PubMed  Google Scholar 

  63. Jung HL, Bowden SJ, Cooper A, Perham RN (2002) Thermodynamic analysis of the binding of component enzymes in the assembly of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Protein Sci 11:1091–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kalia VC, Jain SR, Kumar A, Joshi AP (1994) Fermentation of biowaste to hydrogen by Bacillus licheniformis. World J Microbiol Biotechnol 10:224–227

    Article  CAS  PubMed  Google Scholar 

  65. Kalia VC, Joshi AP (1995) Conversion of waste biomass (pea-shell) into hydrogen and methane through anaerobic digestion. Bioresour Technol 53:165–168

    Article  CAS  Google Scholar 

  66. Kalia VC, Anand V, Kumar A, Joshi AP (1997) Efficient biomethanation of plant materials by immobilized bacteria. In: Proceedings of R’97 congress (recovery, recycling, re-integration) Geneva, Switzerland Feb 4–7 ’97 I:200–205

  67. Kalia VC, Chauhan A, Bhattacharyya G, Rashmi H (2003) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846

    Article  CAS  PubMed  Google Scholar 

  68. Kalia VC, Lal S, Ghai R, Mandal M, Chauhan A (2003) Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol 21:152–156

    Article  CAS  PubMed  Google Scholar 

  69. Kalia VC, Lal S (2006) A process for enhanced biological hydrogen and methane production by fermentative hydrogen producers and methanogens immobilized on lignocellulosic wastes. Patent application No. 152NF2006 (Indian)

  70. Kalia VC, Lal S, Cheema S (2007) Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26

    Article  CAS  PubMed  Google Scholar 

  71. Kalia VC, Rani A, Lal S, Cheema S, Raut CP (2007) Combing databases reveals potential antibiotic producers. Expert Opin Drug Discov 2:211–224

    Article  CAS  PubMed  Google Scholar 

  72. Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  73. Karlin S, Theriot J, Mrázek J (2004) Comparative analysis of gene expression among low G + C gram-positive genomes. Proc Natl Acad Sci 101:6182–6187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kataoka N, Miya A, Kiriyama K (1997) Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci Technol 36:41–47

    Article  CAS  Google Scholar 

  75. Kawaguchi H, Hashimoto K, Hirata K, Miyamoto K (2001) H2 production from algal biomass by mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus. J Biosci Bioeng 91:277–282

    Article  CAS  PubMed  Google Scholar 

  76. Keenan TM, Nakas JP, Tanenbaum SW (2006) Polyhydroxyalkanoate copolymers from forest biomass. J Ind Microbiol Biotechnol 33:616–626

    Article  CAS  PubMed  Google Scholar 

  77. Khanal SK, Chen WH, Li L, Sung S (2004) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy 29:1123–1131

    CAS  Google Scholar 

  78. Khoshoo TN (1991) In: Khoshoo TN (ed) Environmental concerns and strategies. Ashish Publishing House, New Delhi, pp 255–372

  79. Kim DH, Han SK, Kim SH, Shin HS (2006) Effect of gas sparging on continuous fermentative hydrogen production. Int J Hydrogen Energy 31:2158–2169

    Article  CAS  Google Scholar 

  80. Kim JO, Kim YH, Ryu JY, Song BK, Kim IH, Yeom SH (2005) Immobilization methods for continuous hydrogen gas production biofilm formation versus granulation. Process Biochem 40:1331–1337

    Article  CAS  Google Scholar 

  81. Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212

    Article  CAS  PubMed  Google Scholar 

  82. Kondratieva EN, Gogotov IN (1983) Production of molecular hydrogen in microorganisms. Adv Biochem Eng Biotech 28:139–191

    CAS  Google Scholar 

  83. Kosaric N, Lyng RD (1988) Microbial production of hydrogen. In: (Rehm HJ, Reed G (eds) A comprehensive treatise in 8 volumes. vol 6b, pp101–134 Vett. Verlegsgesell-shaft mbh, Weinheim, FRG

  84. Kotay SM, Das D (2007) Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol 98:1183–1190

    Article  CAS  PubMed  Google Scholar 

  85. Kraemer JT, Bagley DM (2006) Supersaturation of dissolved H2 and CO2 during fermentative hydrogen production with N2 sparging. Biotechnol Lett 28:1485–1491

    Article  CAS  PubMed  Google Scholar 

  86. Kraemer JT, Bagley DM (2007) Improving the yield from fermentative hydrogen production. Biotechnol Lett 29:685–695

    Article  CAS  PubMed  Google Scholar 

  87. Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4:957–970

    Article  CAS  PubMed  Google Scholar 

  88. Kuhad RC, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13:151–172

    Article  CAS  Google Scholar 

  89. Kumar A, Jain SR, Sharma CB, Joshi AP, Kalia VC (1995) Increased hydrogen production by immobilized microorganisms. World J Microbiol Biotechnol 11:156–159

    Article  CAS  PubMed  Google Scholar 

  90. Kumar A, Jain SR, Kalia VC, Joshi AP (1998) Effect of some physiological factors on nitrogenase activity and nitrogenase mediated hydrogen evolution by mixed microbial culture. Biochem Mol Biol Int 45:245–253

    CAS  PubMed  Google Scholar 

  91. Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35:589–593

    Article  CAS  Google Scholar 

  92. Kumar N, Das D (2001) Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microbiol Technol 29:280–287

    Article  CAS  Google Scholar 

  93. Kumar N, Roy N, Mishra J, Mukherjee L, Das D (2003) Scanning electron microscopy of immobilized whole cells: A case study on the hydrogen production using immobilized Enterobacter cloacae IIT-BT 08. Science, Technol. Education microscopy: an overview, pp 352–362

  94. Labuzek S, Radecka I (2001) Biosynthesis of PHB tercopolymer by Bacillus cereus UW85. J Appl Microbiol 90:353–357

    Article  CAS  PubMed  Google Scholar 

  95. Lamed R, Zeikus JG (1980) Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol 144:569–578

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33:2579–2586

    Article  CAS  Google Scholar 

  97. Lee CM, Chen PC, Wang CC, Tung YC (2002) Photohydrogen production using purple non-sulfur bacteria with hydrogen fermentation reactor effluent. Int J Hydrogen Energy 27:1309–1313

    Article  CAS  Google Scholar 

  98. Lee KS, Lo YS, Lo YC, Lin PJ, Chang JS (2003) H2 production with anaerobic sludge using activated-carbon supported packed bed bioreactors. Biotechnol Lett 25:133–138

    Article  CAS  PubMed  Google Scholar 

  99. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185

    Article  CAS  Google Scholar 

  100. Levine AS, Tallman JR, Grace MK, Parker SA, Billington CJ, Levitt MD (1989) Effect of breakfast cereals on short-term food intake. Am J Clin Nutr 50:1303–1307

    CAS  PubMed  Google Scholar 

  101. Li CL, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39

    Article  CAS  Google Scholar 

  102. Lin CY, Lay CH (2005) A nutrient formulation for fermentative hydrogen production using sewage sludge mciroflora. Int J Hydrogen Energy 30:285–292

    Article  CAS  Google Scholar 

  103. Liu GZ, Shen JQ (2004) Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J Biosci Bioeng 98:251–256

    Article  CAS  PubMed  Google Scholar 

  104. Liu H, Fang HHP (2002) Hydrogen production from wastewater by acidogenic granular sludge. Water Sci Technol 47:153–158

    Google Scholar 

  105. Liu H, Zhang T, Fang HPP (2003) Thermophilic H2 production from cellulose containing wastewater. Biotechnol Lett 25:365–369

    Article  CAS  PubMed  Google Scholar 

  106. Logan BE, Oh SE, Kim IS, van Ginkel S (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36:2530–2535

    Article  CAS  PubMed  Google Scholar 

  107. Logan BE (2004) Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38:160A–167A

    Article  CAS  PubMed  Google Scholar 

  108. Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104(27):11436–11440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lutgen H, Gottschalk G (1982) Cell and ATP yields of Citrobacter freundii growing with fumarate and H2 or formate in continuous culture. J Gen Microbiol 128:1915

    Google Scholar 

  110. Madamwar D, Garg N, Shah V (2000) Cyanobacterial hydrogen production. World J Microbiol Biotechnol 16:757–767

    Article  CAS  Google Scholar 

  111. Mahyudin AR, Furutani Y, Nakashimada Y, Kakizono T, Nishio N (1997) Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. J Ferment Bioeng 83:358–363

    Article  Google Scholar 

  112. Manczinger L, Rozs M, Vágvölgyi C, Kevei F (2003) Isolation and characterization of a new keratinolytic Bacillus licheniformis strain. World J Microbiol Biotechnol 19:35–39

    Article  CAS  Google Scholar 

  113. Mandal B, Nath K, Das D (2006) Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae. Biotechnol Lett 28:831–835

    Article  CAS  PubMed  Google Scholar 

  114. Maness PC, Weaver PF (2002) Hydrogen production from a carbon-monoxide oxidation pathway in Rubrivivax gelatinosus. Int J Hydrogen Energy 27:1407–1411

    Article  CAS  Google Scholar 

  115. Maschio G, Lucchesi A, Stoppato G (1994) Production of syngas from biomass. Bioresour Technol 48:119–126

    Article  CAS  Google Scholar 

  116. Mc Kendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  CAS  Google Scholar 

  117. Mertens R, Liese A (2004) Biotechnological applications of hydrogenases. Curr Opin Biotechnol 15:343–348

    Article  CAS  PubMed  Google Scholar 

  118. Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73:59–65

    Article  CAS  Google Scholar 

  119. Mizuno O, Ohara T, Shinya M, Noike T (2000) Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. Water Sci Technol 42:345–50

    CAS  Google Scholar 

  120. Moharikar A, Purohit HJ, Kumar R (2005) Microbial population dynamics at effluent treatment plants. J Environ Monit 7:552–558

    Article  CAS  PubMed  Google Scholar 

  121. Morii H, Nakamiya K, Kinoshita S (1995) Isolation of lignin-decoloursing bacterium. J Ferment Bioeng 80:296–299

    Article  CAS  Google Scholar 

  122. Morimoto M, Atsuko M, Atif AAY, Ngan MA, Fakhru’l-Razi A, Iyuke SE, Bakir AM (2004) Biological production of hydrogen from glucose by natural anaerobic microflora. Int J Hydrogen Energy 29:709–713

    Article  CAS  Google Scholar 

  123. Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    Article  CAS  PubMed  Google Scholar 

  124. Nakashimada Y, Rachman MA, Kakizono T, Nishio N (2002) Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox state. Int J Hydrogen Energy 27:1399–1405

    Article  CAS  Google Scholar 

  125. Nandi R, Sengupta R (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24:61–84

    Article  CAS  PubMed  Google Scholar 

  126. Nashio N, Nakashimada Y (2004) High rate production of hydrogen / methane from various substrates and wastes. Recent Prog Biochem Biomed Eng Japan I 90:63–87

    Article  CAS  Google Scholar 

  127. Nath N, Das D (2004) Improvement for fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529

    Article  CAS  PubMed  Google Scholar 

  128. Noike T, Mizuno O (2000) Hydrogen fermentation of organic municipal wastes. Water Sci Technol 42:155–162

    CAS  Google Scholar 

  129. Oh YK, Seol EH, Kim JR, Park S (2003) Fermentative biohydrogen production by a new chemohetreotrophic bacterium Citrobacter sp. Y19. Int J Hydrogen Energy 28:1353–1359

    Article  CAS  Google Scholar 

  130. Okamoto M, Miyahara T, Mizuno O, Noike T (2000) Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci Technol 41:25–32

    CAS  PubMed  Google Scholar 

  131. Onifade AA, Al-Sane NA, Al-Mussallam AA, Al-Zarbam S (1998) Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol 66:1–11

    Article  CAS  Google Scholar 

  132. Orlando US, Baes AU, Nishijima W, Okada M (2002) A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials. Bioresour Technol 83:195–198

    Article  CAS  PubMed  Google Scholar 

  133. Pandey A, Pandey A, Srivastava P, Pandey A (2007) Using reverse micelles as microreactor for hydrogen production by coupled systems of Nostoc/R. palustris and Anabaena/R. palustris. World J Microbiol Biotechnol 23:269–274

    Article  CAS  Google Scholar 

  134. Patel S, Madamwar D (1994) Photohydrogen production from a coupled system of Halobacterium halobium and Phormidium valderianum. Int J Hydrogen Energy 19:733–738

    Article  CAS  Google Scholar 

  135. Perestelo F, Falcon MA, Carnicero A, Rodriguez A, de la Fuente G (1994) Limited degradation of industrial, synthetic and natural lignins by Serratia marcescens. Biotechnol Lett 16:299–302

    Article  CAS  Google Scholar 

  136. Pontes DS, Lima-Bittencourt CI, Chartone-Souza E, Nascimento AMA (2007) Molecular approaches: advantages and artifacts in assessing bacterial diversity. J Ind Microbiol Biotechnol 34:463–473

    Article  CAS  PubMed  Google Scholar 

  137. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2007) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol. doi:10.1016/j.biortech.2007.11.011

  138. Puppan D (2002) Environmental evaluation of biofuels. Period Polytech Ser Soc Man Sci 10:95–116

    Google Scholar 

  139. Quan X, Shi H, Liu H, Lv P, Qian Y (2004) Enhancement of 2,4-dichlorophenol degradation in conventional activated sludge systems bioaugmented with mixed special culture. Water Res 38:245–253

    Article  CAS  PubMed  Google Scholar 

  140. Rachman MA, Nkashimada Y, Kakizono T, Nishio N (1998) Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl Microbiol Biotechnol 49:450–454

    Article  CAS  Google Scholar 

  141. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick Jr WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  142. Raizada N, Sonakya V, Anand V, Kalia VC (2002) Waste management and production of future fuels. J Sci Ind Res 61:184–207

    CAS  Google Scholar 

  143. Ramachandran R, Menon RK (1998) An overview of industrial uses of hydrogen. Int J Hydrogen Energy 23:593–598

    Article  CAS  Google Scholar 

  144. Raskin J (1980) Intestinal gas. Geriatrics 38:77

    Google Scholar 

  145. Reddy CSK, Ghai R, Rashmi H, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    Article  CAS  PubMed  Google Scholar 

  146. Reddy RM, Reddy PG, Seenayya G (1999) Enhanced production of thermostable β-amylase and pullulanase in the presence of surfactants by Clostridium thermosulfurogenes SV2. Process Biochem 34:87–92

    Article  CAS  Google Scholar 

  147. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, Lopez de Leon A, Xiang H, Gusti V, Clausen G, Olsen PB, Rasmussen MD, Andersen JT, Jørgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 4, 5:r77. doi:10.1186/gb-2004-5-10-r77

  148. Robson R (2001) Biodiversity of hydrogenases. In: Cammack R, Robson R, Frey M (eds) Hydrogen as a fuel: learning from nature. Taylor and Francis, London (http://www.kcl.ac.uk/ip/richardcammack/H2/hbook1.html)

  149. Roychowdhury S, Cox D, Levandowsky M (1988) Production of hydrogen by microbial fermentation. Int J Hydrogen Energy 13:407–410

    Article  CAS  Google Scholar 

  150. Rumessen JJ, Bode S, Hamberg O, Gudmand-Hoyer E (1990) Fructans of Jerusalem artichokes: intestinal transport, absorption, fermentation, and influence on blood glucose, insulin, and C-peptide responses in healthy subjects. Am J Clin Nutr 52:675–681

    CAS  PubMed  Google Scholar 

  151. Salih FM (1989) Improvement of hydrogen photoproduction from E. coli pre-treated cheese whey. Int J Hydrogen Energy 19:807–812

    Google Scholar 

  152. Sandrin TO, Maier RM (2003) Impacts of metals on the biodegradation of pollutants. Environ Health Persp 111:1093–1101

    Article  CAS  Google Scholar 

  153. Sasikala K, Ramana CV, Rao PR (1992) Photoproduction of hydrogen from the waste water of a distillery by Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy 17:23–27

    Article  CAS  Google Scholar 

  154. Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in ground water. Curr Opin Biotechnol 16:246–253

    Article  CAS  PubMed  Google Scholar 

  155. Seon YH, Lee CG, Park DH, Hwang KY, Joe YI (1983) Hydrogen production by immobilized cells in nozzle loop bioreactor. Biotechnol Lett 15:1275–1280

    Article  Google Scholar 

  156. Sharma KK, Kapoor M, Kuhad RC (2005) In vivo enzymatic digestion, in vitro xylanase digestion, metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Gonoderma sp. kk-02. Lett Appl Microbiol 41:24–31

    Article  CAS  PubMed  Google Scholar 

  157. Shin HS, Youn JH, Kim SH (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrogen Energy 29:1355–1363

    Article  CAS  Google Scholar 

  158. Sonakya V, Raizada N, Kalia VC (2001) Microbial and enzymatic improvement of anaerobic digestion of waste biomass. Biotechnol Lett 23:1463–1466

    Article  CAS  Google Scholar 

  159. Sparling R, Daniels L (1987) The specificity of growth inhibition of methanogenic bacteria by bromoethane sulfonate. Can J Microbiol 33:1132–1136

    Article  CAS  Google Scholar 

  160. Sparling R, Risbey D, Poggi-Varaldo HM (1997) Hydrogen production from inhibited anaerobic composters. Int J Hydrogen Energy 22:563–566

    Article  CAS  Google Scholar 

  161. Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804

    Article  CAS  PubMed  Google Scholar 

  162. Suihko ML, Stackebrandt E (2003) Identification of aerobic mesophilic Bacilli isolated from board and paper products containing recycled fibres. J Appl Microbiol 94:25–34

    Article  CAS  PubMed  Google Scholar 

  163. Sung S, Raskin L, Duangmanee T, Padmasiri S, Simmons JJ (2002) Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments. In: Proceedings of the 2002 U.S. DOE hydrogen program review NREL/CP-610–32405

  164. Suntornsuk W, Suntornsuk L (2003) Feather degradation by Bacillus sp. FK46 in submerged cultivation. Bioresour Technol 86:239–243

    Article  CAS  PubMed  Google Scholar 

  165. Taguchi F, Mizukami N, Hasegawa K, Saito-Taki T (1994) Microbial conversion of arabinose and xylose to hydrogen by a newly isolated Clostridium sp. no. 2. Can J Microbiol 40:228–233

    Article  CAS  Google Scholar 

  166. Taguchi F, Mizukami N, Saito-Taki T, Hasegawa K (1995) Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain no.2. Can J Microbiol 41:536–540

    Article  CAS  Google Scholar 

  167. Tanisho S, Ishiwata Y (1994) Continuous hydrogen production by molasses by the bacterium Enterobacter aerogenes. Int J Hydrogen Energy 19:807–812

    Article  CAS  Google Scholar 

  168. Thangaraj A, Kulandaivelu G (1994) Biological hydrogen photoproduction using dairy and sugarcane waste waters. Bioresour Technol 48:9–12

    Article  CAS  Google Scholar 

  169. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Tibelius KH, Knowles R (1983) Effect of hydrogen and oxygen on uptake-hydrogenase activity in nitrogen-fixing ammonium-grown Azospirillum brasilense. Can J Microbiol 29:1119–1125

    Article  CAS  Google Scholar 

  171. Tortoriello V, DeLancey GB (2007) Optimal biocatalyst loading in a fixed bed. J Ind Microbiol Biotechnol 34:475–481

    Article  CAS  PubMed  Google Scholar 

  172. Troshina O, Serebryakova L, Sheremetieva M, Lindblad P (2002) Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int J Hydrogen Energy 27:1283–1289

    Article  CAS  Google Scholar 

  173. Turner JA (2004) Sustainable hydrogen production. Science 305:972–974

    Article  CAS  PubMed  Google Scholar 

  174. Ueno Y, Kawai T, Sato S, Otsuka S, Morimoto M (1995) Biological production of hydrogen from cellulose by mixed anaerobic microflora. J Ferment Bioeng 79:395–397

    Article  CAS  Google Scholar 

  175. Ueno Y, Otsuka S, Morimoto M (1996) Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng 82:194–197

    Article  CAS  Google Scholar 

  176. Ueno Y, Haruta S, Ishii M, Igarashi Y (2001) Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora. J Biosci Bioeng 92:397–400

    Article  CAS  PubMed  Google Scholar 

  177. Valdez-Vazquez I, Sparling R, Risbey D, Rinderknecht-Seijas N, Poggi-Varaldo HM (2005) Hydrogen generation via anaerobic fermentation of paper mill wastes. Bioresour Technol 96:1907–1913

    Article  CAS  PubMed  Google Scholar 

  178. Van Ginkel SW, Sung S, Lay JJ (2001) Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35:4726–4730

    Article  CAS  PubMed  Google Scholar 

  179. Van Niel EWJ, Budde MAW, de Haas GG, van der Wal FJ, Claassen PAM, Stams AJM (2002) Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int J Hydrogen Energy 27:1391–1398

    Article  Google Scholar 

  180. VenkataMohan S, Babu VL, Sarma PN (2007) Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour Technol. doi:10.1016/j.biortech.2006/.12.004

  181. Veziroglu TN, Barbir F (1992) Hydrogen: the wonder fuel. Int J Hydrogen Energy 17:391–404

    Article  CAS  Google Scholar 

  182. Veziroglu TN (1995) Twenty years of hydrogen movement 1974–1994. Int J Hydrogen Energy 20:1–7

    Article  CAS  Google Scholar 

  183. Vincenzini M, Marchini A, Ena A, De Philippis R (1997) H2 and poly-β-hydroxybutyrate, two alternative chemicals from purple non-sulfur bacteria. Biotechnol Lett 19:759–762

    Article  CAS  Google Scholar 

  184. Walter J, Mangold M, Tannock GW (2005) Construction, analysis, and β-glucanasae cscreening of a bacterial artifical chromosome library from the large bowel microbiota of mice. Appl Environ Microbiol 71:2347–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wani A, Surakasi VP, Siddharth J, Raghavan RG, Patole MS, Ranade D, Shouche YS (2006) Molecular analyses of microbial diversity associated with the Lonar soda lake in India: an impact crater in a basalt area. Res Microbiol 157:928–937

    Article  CAS  PubMed  Google Scholar 

  186. Wawrzkiewicz K, Wolski T, Lobarzewski J (1991) Screening of keratinolytic activity of dermatophytes in vitro. Mycophtholodgia 114:1–8

    Article  CAS  Google Scholar 

  187. Weaver P, Lien S, Seibert M (1980) Photobiological production of hydrogen. Solar Energy 24:3

    Article  CAS  Google Scholar 

  188. Wolin MJ (1979) The rumen fermentation: a model for microbial. interactions in anaerobic ecosystems. Adv Microb Ecol 3:49–77

    Article  CAS  Google Scholar 

  189. Wu SY, Lin CN, Lee KS, Chang JS, Kin PJ (2002) Microbial hydrogen production with immobilized sewage sludge. Biotechnol Prog 18:921–926

    Article  CAS  PubMed  Google Scholar 

  190. Wu SY, Lin CN, Chang JS, Chang JS (2005) Biohydrogen production with anaerobic sludge immobilized by ethylene-vinyl acetate copolymer. Int J Hydrogen Energy 30:1375–1381

    Article  CAS  Google Scholar 

  191. Wunschiers R, Lindblad P (2002) Hydrogen in education—a biological approach. Int J Hydrogen Energy 27:1131–1140

    Article  CAS  Google Scholar 

  192. Yeonghee A, Eun-Jung P, You-Kwan O, Sunghoon P, Gordion W, Weightman AJ (2005) Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production. FEMS Microbiol Lett 249:31–38

    Article  CAS  Google Scholar 

  193. Yigit DO, Gunduz U, Turker L, Yucel M, Eroglu I (1999) Identification of by-products in hydrogen producing bacteria; Rhodobacter sphaeroides O.U. 001 grown in the wastewater of a sugar refinery. J Biotechnol 70:125–131

    Article  CAS  Google Scholar 

  194. Yilmaz M, Soran H, Beyatli Y (2005) Determination of poly-β-hydroxybutyrate (PHB) production by some Bacillus spp World J Microbiol Biotechnol 21:565–566

    Article  CAS  Google Scholar 

  195. Yokoi H, Maeda Y, Hirose J, Hayashi S, Takasaki Y (1997) H2 production by immobilized cells of Clostridium butyricum on porous glass beads. Bioresour Technol 11:431–433

    CAS  Google Scholar 

  196. Yokoi H, Mori S, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by mixed culture of Clostridium butyricum and Rhodobacter sp M-19. Biotechnol Lett 20:895–899

    Article  CAS  Google Scholar 

  197. Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by mixed culture of Clostridium buytricum and Enterobacter aerogenes. Biotechnol Lett 20:143–147

    Article  CAS  Google Scholar 

  198. Yokoi H, Saitsu AS, Uchida H, Hirose J, Hayashi S, Takasaki Y (2001) Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 91:58–63

    Article  CAS  PubMed  Google Scholar 

  199. Yokoi H, Maki R, Hirose J, Hayashi S (2002) Microbial production of hydrogen from starch manufacturing wastes. Biomass Bioenergy 22:89–395

    Article  Google Scholar 

  200. Yokoyama H, Waki M, Moriya N, Yasuda T, Tanaka Y, Haga K (2007) Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74:474–483

    Article  CAS  PubMed  Google Scholar 

  201. Yokoyama H, Waki M, Ogino A, Ohmori H, Tanaka Y (2007) Hydrogen fermentation properties of undiluted cow dung. J Biosci Bioeng 104:82–85

    Article  CAS  PubMed  Google Scholar 

  202. Yu Z, Mohn WW (2002) Bioaugmentation with the resin acid-degrading bacterium Zoogloea resiniphila DhA-35 to counteract pH stress in an aerated lagoon treating pulp and paper mill effluent. Water Res 36:2793–2801

    Article  CAS  PubMed  Google Scholar 

  203. Zajic JE, Margaritis A, Brosseau JD (1979) Microbial hydrogen production from replenishable resources. Int J Hydrogen Energy 4:385–402

    Article  CAS  Google Scholar 

  204. Zeikus JG (1977) The biology of methanogenic bacteria. Bacteriol Rev 41:514–541

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Zeikus JG (1980) Chemical and fuel production by anaerobic bacteria. Annu Rev Microbiol 34:423–464

    Article  CAS  PubMed  Google Scholar 

  206. Zhang T, Liu H, Fang HHP (2003) Biohydrogen production from starch in wastewater under thermophilic condition. J Environ Manage 69:149–156

    Article  PubMed  Google Scholar 

  207. Zhu H, Suzuki T, Tsygankov AA, Asada Y, Miyake J (1999) Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. Int J Hydrogen Energy 24:305–310

    Article  CAS  Google Scholar 

  208. Zinder SH (1986) Thermophilic waste treatment systems. In: Brock TD (ed) Thermophiles: general, molecular and applied biology. Wiley-Interscience, New York, p 257

    Google Scholar 

  209. Zurrer H, Bachofen R (1982) Aspects of growth and H2 production of the photosynthetic bacterium Rhodospirillum rubrum. Biomass 2:165–174

    Article  Google Scholar 

  210. http://nai.arc.nasa.gov/news_stories/news_detail.cfm?article=deepbugs.cfm

  211. http://rdp.cme.msu.edu

  212. http://www.genome.ad.jp/

  213. http://www.ncbi.nlm.nih.gov/

  214. http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/fermentation_wkshp.pdf

  215. http://www.thilo-ruehle.de/Biblio/Biblio.htm

Download references

Acknowledgments

We are thankful to Prof. S. K. Brahmachari, Director, Institute of Genomics and Integrative Biology, CSIR, Dr. S. Devotta, Director, National Environmental Engineering Research Institute, CSIR and CSIR Task Force project for providing the necessary funds, facilities and moral support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Chandra Kalia.

Additional information

JIMB 2008: BioEnergy-Special issue

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalia, V.C., Purohit, H.J. Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35, 403–419 (2008). https://doi.org/10.1007/s10295-007-0300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0300-y

Keywords

Navigation