Skip to main content
Log in

Efficiency evaluations of statistical decision probabilities with multiple alternative hypotheses for quality control

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Efficiency evaluations of statistical decision probabilities with multiple alternative hypotheses are a prerequisite for data quality control in positioning, navigation, and many other applications. Commonly, one uses a time-consuming simulation technique to obtain the statistical decision probabilities or builds lower and/or upper bounds to control the probability, which may be unconvincing when the bounds are loose. We aim to provide a computationally efficient way to calculate the multivariate statistical decision probabilities when performing data snooping in quality control. However, accurate evaluation of those probabilities is complicated considering the complexity of the critical region where the integration intervals contain a variable corresponding to the one with the largest absolute value. Hence, to improve the calculation of statistical decision probabilities, a simplified algorithm for computing the probabilities under the critical region is proposed based on a series of transformation strategies. We implement the proposed algorithm in a simulated numerical experiment and a GPS single-point positioning experiment. The results show that the probabilities computed with the proposed algorithm approximate the results of the simulation technique, but the proposed algorithm is computationally more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

GNSS observation data and broadcast ephemeris files of station ABMF are provided freely by IGS and MGEX (https://cddis.nasa.gov/archive/gps/data/daily).

References

  • Baarda W (1968) A testing procedure for use in geodetic networks. Technical report Netherlands Geodetic Commission, 2(5)

  • Bang E, Milner C, Macabiau C (2020) Cross-correlation effect of ARAIM test statistic on false alarm risk. GPS Solut 24(4):1–14

    Article  Google Scholar 

  • Bang E, Milner C, Macabiau C, Estival P (2018) ARAIM test statistic correlation. In: Proceedings of the ION ITM 2018. The Institute of Navigation, Reston, Virginia, pp 99–113

  • El-Mowafy A, Imparato D, Rizos C, Wang J, Wang K (2019) On hypothesis testing in RAIM algorithms: Generalized likelihood ratio test, solution separation test and a possible alternative. Meas Sci Technol 30(7):075001

    Article  Google Scholar 

  • Förstner W (1983) Reliability and discernability of extended Gauss-Markov models. Seminar on Mathematical Models to Outliers and Systematic Errors, Series A, No. 98, Deutsche Geodätische Kommision, Munich, Germany, pp 79–103

  • Genz A (1992) Numerical computation of multivariate normal probabilities. J Comput Graphical Stat 1(2):141–149

    Google Scholar 

  • Genz A, Kwong KS (2000) Numerical evaluation of singular multivariate normal distribution. J Stat Comput Simul 68(1):1–21

    Article  Google Scholar 

  • Gui Q, Gong Y, Li G, Li B (2007) A Bayesian approach to the detection of gross errors based on posterior probability. J Geodesy 81:651–659

    Article  Google Scholar 

  • Gui Q, Li X, Gong Y, Li B, Li G (2011) A Bayesian unmasking method for locating multiple gross errors based on posterior probabilities of classification variables. J Geodesy 85:191–203

    Article  Google Scholar 

  • Healy MJR (1968) Algorithm AS 6: triangular decomposition of a symmetric matrix. J R Stat Soc Ser C (appl Stat) 17(2):195–197

    Google Scholar 

  • Imparato D, Teunissen PJG, Tiberius C (2019) Minimal detectable and identifiable biases for quality control. Surv Rev 51(367):289–299

    Article  Google Scholar 

  • Knight NL, Wang J, Rizos C (2010) Generalised measures of reliability for multiple outliers. J Geodesy 84(10):625–635

    Article  Google Scholar 

  • Lehmann R (2012) Improved critical values for extreme normalized and studentized residuals in Gauss-Markov models. J Geodesy 86(12):1137–1146

    Article  Google Scholar 

  • Lehmann R (2015) Observation error model selection by information criteria vs. normality testing. Stud Geophys Geod 59(4):489–504

    Article  Google Scholar 

  • Lehmann R, Lösler M (2016) Multiple outlier detection: hypothesis tests versus model selection by information criteria. J Surv Eng 142(4):04016017

    Article  Google Scholar 

  • Pervan BS, Lawrence DG, Parkinson BW (1998) Autonomous fault detection and removal using GPS carrier phase. IEEE Trans Aerosp Electron Syst 34(3):897–906

    Article  Google Scholar 

  • Prószyński W (2015) Revisiting Baarda’s concept of minimal detectable bias with regard to outlier identifiability. J Geodesy 89(10):993–1003

    Article  Google Scholar 

  • Rofatto VF, Matsuoka MT, Klein I, Veronez MR, Silveira LG Jr (2020) A Monte Carlo-based outlier diagnosis method for sensitivity analysis. Remote Sens 12(5):860

    Article  Google Scholar 

  • Tanizaki H (2004) Computational methods in statistics and econometrics. Marcel Dekker, New York

    Book  Google Scholar 

  • Teunissen PJG (2000) Testing theory: an introduction. Delft University Press, Delft, Netherlands

    Google Scholar 

  • Teunissen PJG (2018) Distributional theory for the DIA method. J Geodesy 92(1):59–80

    Article  Google Scholar 

  • Teunissen PJG, Imparato D, Tiberius CCJM (2017) Does RAIM with correct exclusion produce unbiased positions? Sens 17(7):1508

    Article  Google Scholar 

  • Wang J, Knight NL (2012) New outlier separability test and its application in GNSS positioning. J Glob Position Syst 11(1):46–57

    Article  Google Scholar 

  • Yang Y, Xu J (2016) GNSS receiver autonomous integrity monitoring (RAIM) algorithm based on robust estimation. Geodesy Geodyn 7(2):117–123

    Article  Google Scholar 

  • Yang L, Wang J, Knight NL, Shen Y (2013) Outlier separability analysis with a multiple alternative hypotheses test. J Geodesy 87(6):591–604

  • Yang L, Li B, Shen Y, Rizos C (2017) Extension of internal reliability analysis regarding separability analysis. J Surv Eng 143(3):04017002

    Article  Google Scholar 

  • Yang L, Shen Y, Li B, Rizos C (2021) Simplified algebraic estimation for the quality control of DIA estimator. J Geodesy 95(1):1–15

    Article  Google Scholar 

  • Zaminpardaz S, Teunissen PJG (2019) DIA-Datasnooping and Identifiability. J Geodesy 93(1):85–101

    Article  Google Scholar 

  • Zhang Q, Gui Q (2015) A new Bayesian RAIM for multiple faults detection and exclusion in GNSS. J Navig 68(3):465–479

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to anonymous reviewers for their valuable comments. This study is supported by the Open Fund of State Key Laboratory of Remote Sensing Science (No. OFSLRSS202111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Standard integration form of F 1

The general form of the lower triangular matrix \({\varvec{C}}\) extracted via the generalized Cholesky decomposition of \(\boldsymbol{\varSigma}_{\varvec{w}} = \varvec{CC}^{{\text{T}}}\) with \({\text{rank}}\left( {\boldsymbol{\varSigma}_{\varvec{w}} } \right) = r \le n\) can be further formulated after grouping the rows whose last nonzero elements have the same column number. This requires a series of row permutations of \({\varvec{C}}\), which result in

$$\left[ {\begin{array}{*{20}c} {c_{11} } & 0 & 0 & \cdots & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ {c_{{l_{1} 1}} } & 0 & 0 & \cdots & \cdots & 0 & \cdots & 0 \\ * & {c_{{(l_{1} + 1)2}} } & 0 & \cdots & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ * & {c_{{(l_{1} + l_{2} )2}} } & 0 & \cdots & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 & \cdots & 0 \\ * & * & \cdots & * & {c_{{(l_{1} + \cdots + l_{r - 1} )r}} } & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ * & * & * & * & {c_{{(l_{1} + \cdots + l_{r} )r}} } & 0 & \cdots & 0 \\ \end{array} } \right]$$
(39)

where the subscripts in (39) denote the row and column numbers and the symbol * denotes a zero or nonzero value. In particular, \(c_{sj} = 0\) for \(j > r\) with \(s,\;j = 1, \cdots ,n\) and \(l_{1} + \cdots + l_{r} = n\).

Equation (39) can further be normalized to

$${\varvec{C}}^{1} = \left[ {\begin{array}{*{20}c} {1_{11} } & 0 & 0 & \cdots & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ {1_{{l_{1} 1}} } & 0 & 0 & \cdots & \cdots & 0 & \cdots & 0 \\ * & {1_{{(l_{1} + 1)2}} } & 0 & \cdots & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ * & {1_{{(l_{1} + l_{2} )2}} } & 0 & \cdots & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 & \cdots & 0 \\ * & * & \cdots & * & {1_{{(l_{1} + \cdots + l_{r - 1} )r}} } & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ * & * & * & * & {1_{{(l_{1} + \cdots + l_{r} )r}} } & 0 & \cdots & 0 \\ \end{array} } \right]$$
(40)

The components of the lower and upper limits of the inequality \(- \varvec T - \varvec{\mu} < \varvec{C\theta} < \varvec T - \varvec{\mu}\) in (18) should also be adjusted accordingly, accompanied by the above permutation and normalization operators. In particular, interchanges of the elements corresponding to the lower and upper limits are necessary when dividing a negative value during normalizations (Bang et al. 2020). Hence, one can then define the transformed vectors \({\varvec{T}}^{1} = \left[ {t_{1}^{1} ,\; \ldots ,\;t_{n}^{1} } \right]^{{\text{T}}}\) and \({\varvec{\mu}}^{1} = [\mu_{1}^{1} ,\; \ldots ,\;\mu_{n}^{1} ]^{{\text{T}}}\), which are the counterparts of \(\varvec T\) and \(\varvec{\mu}\) after permutations and normalizations.

Combining (18) with (40), one can find that only the first \(r\) variables of \({\varvec{\theta}}\) are constrained and one must take the additional \(n - r\) constraints on \(\varvec{\theta}^{\prime} = \left[ {\theta_{1} ,\; \ldots ,\;\theta_{r} } \right]^{{\text{T}}}\) into account (Genz and Kwong 2000; Bang et al. 2020). Based on the structure of (40), the \(n - r\) constraints are distributed into \(r\) groups, each containing \(l_{k}\) constraints, where \(1 \le l_{k} \le n - r\) and \(k = 1,\; \ldots ,\;r \le n\). Then, each set of \(l_{k}\) constraints is merged to produce a single constraint on \(\theta_{k}\), which is given in the following scalar forms (Genz and Kwong 2000):

$$\underbrace {{\mathop {\max }\limits_{{h_{k - 1} \le s \le h_{k} }} \left( { - \mu_{s}^{1} - t_{s}^{1} - \sum\limits_{j = 1}^{k - 1} {c_{sj}^{1} \theta_{j} } } \right)}}_{{L_{k}^{1} (\theta_{1} ,\theta_{2} , \cdots ,\theta_{k - 1} )}} < \theta_{k} < \underbrace {{\max \left( {L_{k}^{1} ,\;\mathop {\min }\limits_{{h_{k - 1} \le s \le h_{k} }} \left( { - \mu_{s}^{1} + t_{s}^{1} - \sum\limits_{j = 1}^{k - 1} {c_{sj}^{1} \theta_{j} } } \right)} \right)}}_{{U_{k}^{1} (\theta_{1} ,\theta_{2} , \cdots ,\theta_{k - 1} )}}$$
(41)

where \(c_{sj}^{1}\) denotes the element in the sth row and jth column of \({\varvec{C}}^{1}\) and \(h_{k} = \sum\nolimits_{i = 1}^{k} {l_{i} }\).With (40) and (41), equation (18) is equivalent to

$$F^{1} = \frac{1}{{\sqrt {(2\pi )^{r} } }}\int\limits_{{L_{1}^{1} }}^{{U_{1}^{1} }} {e^{{ - \frac{1}{2}\theta_{1}^{2} }} } \int\limits_{{L_{2}^{1} (\theta_{1} )}}^{{U_{2}^{1} (\theta_{1} )}} {e^{{ - \frac{1}{2}\theta_{2}^{2} }} } \cdots \int\limits_{{L_{r}^{1} (\theta_{1} ,\theta_{2} , \cdots ,\theta_{r - 1} )}}^{{U_{r}^{1} (\theta_{1} ,\theta_{2} , \cdots ,\theta_{r - 1} )}} {e^{{ - \frac{1}{2}\theta_{r}^{2} }} {\text{d}}\varvec{\theta}^{\prime}}$$
(42)

Considering the Gaussian cumulative distribution function (CDF) \(\Phi \left( x \right) = \frac{1}{{\sqrt {2\pi } }}\int\limits_{ - \infty }^{x} {e^{{ - \frac{1}{2}y^{2} }} {\text{d}}y}\), each \(\theta_{k}\) can be transformed as \(\theta_{k} = \Phi^{ - 1} \left( {z_{k} } \right)\). Then, one has

$$F^{1} = \int\limits_{{\overline{L}_{1}^{1} }}^{{\overline{U}_{1}^{1} }} {\int\limits_{{\overline{L}_{2}^{1} (z_{1} )}}^{{\overline{U}_{2}^{1} (z_{1} )}} { \cdots \int\limits_{{\overline{L}_{r}^{1} (z_{1} ,z_{2} , \cdots ,z_{r - 1} )}}^{{\overline{U}_{r}^{1} (z_{1} ,z_{2} , \cdots ,z_{r - 1} )}} {{\text{d}}{\varvec{z}}} } }$$
(43)

where \(\mathop {\varvec{z}}\limits_{r \times 1} = \left[ {z_{1} ,\; \ldots ,\;z_{r} } \right]^{{\text{T}}}\), \(\overline{L}_{k}^{1} (z_{1} ,z_{2} , \cdots ,z_{k - 1} ) = \Phi \left( {\mathop {\max }\limits_{{h_{k - 1} \le s \le h_{k} }} \left( { - \mu_{s}^{1} - t_{s}^{1} - \sum\nolimits_{j = 1}^{k - 1} {c_{sj}^{1} \Phi^{ - 1} \left( {z_{j} } \right)} } \right)} \right)\), and \(\overline{U}_{k}^{1} (z_{1} ,z_{2} , \cdots ,z_{k - 1} ) = \Phi \left( {\max \left( {\overline{L}_{k}^{1} ,\;\mathop {\min }\limits_{{h_{k - 1} \le s \le h_{k} }} \left( { - \mu_{s}^{1} + t_{s}^{1} - \sum\nolimits_{j = 1}^{k - 1} {c_{sj}^{1} \Phi^{ - 1} \left( {z_{j} } \right)} } \right)} \right)} \right)\).

Substitutions are made by setting \(z_{k} = \overline{L}_{k}^{1} + \left( {\overline{U}_{k}^{1} - \overline{L}_{k}^{1} } \right)u_{k}\); thus, (43) can be transformed into

$$F^{1} = \left( {\overline{U}_{1}^{1} - \overline{L}_{1}^{1} } \right)\int\limits_{0}^{1} {\left( {\overline{U}_{2}^{1} (u_{1} ) - \overline{L}_{2}^{1} (u_{1} )} \right)} \; \cdots \int\limits_{0}^{1} {\left( {\overline{U}_{r}^{1} (u_{1} ,u_{2} , \cdots ,u_{r - 1} ) - \overline{L}_{r}^{1} (u_{1} ,u_{2} , \cdots ,u_{r - 1} )} \right)} \int\limits_{0}^{1} {{\text{d}}\varvec u}$$
(44)

where \(\mathop u\limits_{r \times 1} = \left[ {u_{1} ,\; \ldots ,\;u_{r} } \right]^{{\text{T}}}\), \(\overline{L}_{k}^{1} (u_{1} ,u_{2} , \cdots ,u_{k - 1} ) = \Phi \left( {\mathop {\max }\limits_{{h_{k - 1} \le s \le h_{k} }} \left( { - \mu_{s}^{1} - t_{s}^{1} - \sum\nolimits_{j = 1}^{k - 1} {c_{sj}^{1} \Phi^{ - 1} \left( {\overline{L}_{j}^{1} + \left( {\overline{U}_{j}^{1} - \overline{L}_{j}^{1} } \right)u_{j} } \right)} } \right)} \right)\), and \(\overline{U}_{k}^{1} (u_{1} ,u_{2} , \cdots ,u_{k - 1} ) = \Phi \left( {\max \left( {\overline{L}_{k}^{1} ,\;\mathop {\min }\limits_{{h_{k - 1} \le s \le h_{k} }} \left( { - \mu_{s}^{1} + t_{s}^{1} - \sum\nolimits_{j = 1}^{k - 1} {c_{sj}^{1} \Phi^{ - 1} \left( {\overline{L}_{j}^{1} + \left( {\overline{U}_{j}^{1} - \overline{L}_{j}^{1} } \right)u_{j} } \right)} } \right)} \right)} \right)\).

Appendix 2

Results by the transformation algorithm of the first experiment

See tables 1 and 2

Table 1 Values of the statistical decision probabilities \(\alpha_{00}\) and \(\sum \alpha_{0i}\), the critical value \(c_{\alpha }\), and the noncentrality parameter \(\delta\) as calculated by the transformation algorithm with varying \(\rho\) under different numbers of alternative hypotheses
Table 2 Values of the statistical decision probabilities \(\beta_{ii}\), \(\beta_{i0}\), and \(\sum \gamma_{ij}\) as calculated by the transformation algorithm with varying \(\rho\) under different numbers of alternative hypotheses

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Lian, D., Chen, G. et al. Efficiency evaluations of statistical decision probabilities with multiple alternative hypotheses for quality control. GPS Solut 26, 62 (2022). https://doi.org/10.1007/s10291-022-01245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-022-01245-z

Keywords

Navigation