Skip to main content

Advertisement

Log in

Carrier phase wind-up in GPS reflectometry

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

An Erratum to this article was published on 11 December 2009

Abstract

Changes in GPS transmitter and receiver antenna orientations induce variations in observed carrier phase values. An analytic formula for this well-known carrier phase wind-up correction is derived which generalizes a previous result. In addition, it is shown that in GPS reflectometry the wind-up values of direct and coherently reflected rays may differ by up to several centimeters. The results are discussed on the basis of simulated measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson KD (2000) Determination of water level and tides using interferometric observations of GPS signals. J Atmos Ocean Tech 17(8):1118–1127. doi:10.1175/1520-0426

    Article  Google Scholar 

  • Bar-Sever YE (1996) A new model for GPS yaw attitude. J Geod 70(11):714–723

    Article  Google Scholar 

  • Beutler G et al (2007) Bernese GPS software version 5.0, Tech. rep., Astronomical Institute, University of Bern

  • Born M, Wolf E (1980) Principles of optics. Pergamon Press, Oxford

    Google Scholar 

  • Bronstein IN, Semendjajew KA (1981) Taschenbuch der Mathematik, Verlag Harri Deutsch, Thun

  • Cardellach E, Ribó S, Rius A (2006) Technical note on polarimetric phase interferometry (POPI), Tech. Rep. http://arxiv.org/abs/physics/0606099

  • García-Fernández M, Markgraf M, Montenbruck O (2008) Spin rate estimation of sounding rockets using GPS wind-up. GPS Solut 12(3):155–161

    Article  Google Scholar 

  • Hecht E, Zajac A (1997) Optics. Addison Wesley, Reading

    Google Scholar 

  • Jackson JD (1999) Classical electrodynamics. Wiley, New York

    Google Scholar 

  • Kim D, Serrano L, Langley R (2006) Phase wind-up analysis: assessing real-time kinematic performance. GPS World 17(9):58–64

    Google Scholar 

  • Martìn-Neira M, Caparrini M, Font-Rosello J, Lannelongue S, Vallmitjana CS (2001) The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals. IEEE Trans Geosci Remote Sens 39(1):142–150

    Article  Google Scholar 

  • Misra P, Enge P (2006) Global positioning system: signals, measurements, and performance. Ganga-Jamuna Press, Lincoln

  • Montenbruck O, García-Fernández M, Yoon Y, Schön S, Jäggi A (2008) Antenna phase center calibration for precise positioning of LEO satellites, GPS Solut. 12, publ. online. doi:10.1007/s10291-008-0094-z

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798

    Article  Google Scholar 

  • Tetewsky AK, Mullen FE (1997) Carrier phase wrap-up induced by rotating GPS antennas. GPS World 8(2):51–57

    Google Scholar 

  • Treuhaft RN, Lowe ST, Zuffada C, Chao Y (2001) 2-cm GPS altimetry over Crater lake. Geophys Res Lett 22(23):4343–4346

    Article  Google Scholar 

  • Wu JT, Wu SC, Hajj GA, Bertiger WI, Lichten SM (1993) Effects of antenna orientation on GPS carrier phase. Manuscripta Geodaetica 18(2):91–98

    Google Scholar 

Download references

Acknowledgments

Helpful comments and suggestions by my colleagues at GFZ, Antonio Rius (IEEC, Barcelona) and an anonymous reviewer are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Beyerle.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10291-009-0154-z

Appendix

Appendix

In the following we first show that the phase wind-up value derived from Eq. 10 is identical to the value derived using Eq. 14 provided that the transmitter and receiver antenna boresight vectors \( \hat{t}^{b} \) and \( \hat{r}^{b} \) lie in one plane. We then derive Eq. 8.

The unit wave vector \( \hat{k} \) can then be written as a linear combination of \( \hat{t}^{b} \) and \( \hat{r}^{b} \)

$$ \hat{k} = \alpha \hat{t}^{b} + \beta \hat{r}^{b} $$
(26)

where it is assumed that \( \hat{t}^{b} \) and \( \hat{r}^{b} \) are not collinear. We define nine parameters a, b, c, d, A, B, C, D and Δ by

$$ R \equiv \left( {\begin{array}{*{20}c} {\hat{t}^{a} \cdot \hat{r}^{a} } & {\hat{t}^{a} \cdot \hat{r}^{t} } & {\hat{t}^{a} \cdot \hat{r}^{b} } \\ {\hat{t}^{t} \cdot \hat{r}^{a} } & {\hat{t}^{t} \cdot \hat{r}^{t} } & {\hat{t}^{t} \cdot \hat{r}^{b} } \\ {\hat{t}^{b} \cdot \hat{r}^{a} } & {\hat{t}^{b} \cdot \hat{r}^{t} } & {\hat{t}^{b} \cdot \hat{r}^{b} } \\ \end{array} } \right) \equiv \left( {\begin{array}{*{20}c} a & c & A \\ b & d & B \\ C & D & \Updelta \\ \end{array} } \right) $$
(27)

noting that

$$ \begin{aligned} \Updelta & = \left( {\hat{t}^{a} \times \hat{t}^{t} } \right) \cdot \left( {\hat{r}^{a} \times \hat{r}^{t} } \right) \\ & = \left( {\hat{t}^{a} \cdot \hat{r}^{a} } \right)\left( {\hat{t}^{t} \cdot \hat{r}^{t} } \right) - \left( {\hat{t}^{t} \cdot \hat{r}^{a} } \right)\left( {\hat{t}^{a} \cdot \hat{r}^{t} } \right) \\ & = ad - bc. \\ \end{aligned} $$
(28)

Since the vectors \( \left[ {\hat{t}^{a} ,\hat{t}^{t} ,\hat{t}^{b} } \right] \) and \( \left[ {\hat{r}^{a} ,\hat{r}^{t} ,\hat{r}^{b} } \right] \) can be regarded as bases of cartesian coordinate systems, the matrix R is orthonormal, i.e.,

$$ \begin{gathered} \sum\limits_{k = 1}^{3} {R_{ik} R_{jk} = \delta_{ij} } \\ \sum\limits_{k = 1}^{3} {R_{ki} R_{kj} = \delta_{ij} } \\ \end{gathered} $$
(29)

with the Kronecker delta defined by

$$ \delta_{ij} \equiv \left\{ {\begin{array}{*{20}c} 0 & : & {i \ne j} \\ 1 & : & {i = j} \\ \end{array} } \right. $$
(30)

For example, Eq. 29 translates into the following relations which will be used later

$$ cA + dB + D\Updelta = 0 $$
(31)
$$ a^{2} + b^{2} + C^{2} = 1 $$
(32)
$$ c^{2} + d^{2} + D^{2} = 1 $$
(33)
$$ a^{2} + c^{2} + A^{2} = 1 $$
(34)
$$ b^{2} + d^{2} + B^{2} = 1 $$
(35)
$$ C^{2} + D^{2} + \Updelta^{2} = 1 $$
(36)

From Eq. 26 and \( \left| {\hat{k}} \right| = 1 \) it follows that

$$ \alpha^{2} + \beta^{2} + 2\alpha \beta \Updelta = 1 $$
(37)

and Eqs. 32, 33 and 36 yield

$$ a^{2} + b^{2} + c^{2} + d^{2} = 1 + \Updelta^{2} $$
(38)

Equation 10 can now be re-written in terms of the parameters defined in Eq. 27,

$$ \begin{aligned} \vec{T}^{t} (\hat{k}) \cdot \hat{r}^{a} & = \left( {\left( {\hat{k} \times \hat{t}^{t} } \right) \times \hat{k}} \right) \cdot \hat{r}^{a} \\ & = \left( {\hat{t}^{t} - \hat{k}\left( {\hat{k} \cdot \hat{t}^{t} } \right)} \right) \cdot \hat{r}^{a} \\ & = b - \alpha \beta BC \\ \end{aligned} $$
(39)

Similarly, one obtains

$$ \begin{aligned} \vec{T}^{a} (\hat{k}) \cdot \hat{r}^{t} & = c - \alpha \beta AD \\ \vec{T}^{a} (\hat{k}) \cdot \hat{r}^{a} & = a - \alpha \beta AC \\ \vec{T}^{t} (\hat{k}) \cdot \hat{r}^{t} & = d - \alpha \beta BD \\ \end{aligned} $$
(40)

In the next step, the products AD, BC, AC and BD are expressed in terms of a, b, c and d. For example, by squaring Eq. 31, inserting Eqs. 35, 34 and 33 and using Eq. 38 one obtains

$$ \begin{aligned} AD & = \frac{1}{2c\Updelta }\left( {d^{2} (1 - b^{2} - d^{2} ) - c^{2} (1 - a^{2} - c^{2} ) - \Updelta^{2} (1 - c^{2} - d^{2} )} \right) \\ & = \frac{1}{2c\Updelta }\left( {d^{2} (a^{2} + c^{2} - \Updelta^{2} ) - c^{2} (b^{2} + d^{2} - \Updelta^{2} ) - \Updelta^{2} (1 - c^{2} - d^{2} )} \right) \\ & = \frac{1}{2c\Updelta }\left( {\Updelta (ad + bc) - \Updelta^{2} + 2c^{2} \Updelta^{2} )} \right) \\ & = b + c\Updelta \\ \end{aligned} $$
(41)

Similarly, for the remaining products one finds

$$ \begin{aligned} BC & = c + b\Updelta \\ AC & = - d + a\Updelta \\ BD & = - a + d\Updelta \\ \end{aligned} $$
(42)

and Eq. 10 becomes

$$ \Upphi = \arctan\!2(b + c,a - d). $$

The corresponding expressions for Eq. 15 are

$$ \begin{aligned} \vec{D} \cdot \vec{D}' & = a - d + \alpha \beta (BD - AC) + (\alpha - \beta )(a - d) \\ & = (a - d)(1 + \alpha - \beta - \alpha \beta (1 + \Updelta )) \\ \left| {\vec{D}} \right|^{2} & = \vec{D} \cdot \vec{D} = 2 - \alpha^{2} (C^{2} + D^{2} ) - 2\alpha \Updelta - 2\beta \\ & = (1 - \alpha \Updelta - \beta )^{2} \\ \left| {\vec{D}'} \right|^{2} & = \vec{D}' \cdot \vec{D}' = 2 - \beta^{2} (A^{2} + B^{2} ) + 2\beta \Updelta + 2\alpha \\ & = (1 + \alpha + \beta \Updelta )^{2} \\ \varsigma & = \frac{1}{2}(b + c)(1 + \alpha - \beta )^{2} \\ \end{aligned} $$
(43)

using Eqs. 26 and 37. Note that Eqs. 14 and 43 imply

$$ \left| {\vec{D}} \right| = 1 - \alpha \Updelta - \beta \ne 0\quad {\text{and}}\quad \left| {\vec{D}^{\prime}} \right| = 1 + \alpha + \beta \Updelta \ne 0. $$
(44)

Using Eqs. 43 and 37, \( \tilde{\Upphi } \) is given by

$$ \begin{aligned} \tilde{\Upphi } & = \text{sgn} (\varsigma )\arccos \left( {\frac{(a - d)(1 + \alpha - \beta - \alpha \beta (1 + \Updelta ))}{(1 - \alpha \Updelta - \beta )(1 + \alpha + \beta \Updelta )}} \right) \\ & = \text{sgn} (b + c)\arccos \left( {\frac{a - d}{1 - \Updelta }} \right) \\ \end{aligned} $$
(45)

since

$$ (1 - \alpha \Updelta - \beta )(1 + \alpha + \beta \Updelta ) = (1 - \Updelta )(1 + \alpha - \beta - \alpha \beta (1 + \Updelta )) $$
(46)

In Eq. 45 sgn(ζ) has been replaced by sgn(c) which is only admissible for 1 + α − β ≠ 0. However, if 1 + α − β = 0 the rhs of Eq. 46 was identically zero (see Eq. 37) contradicting Eq. 44.

With \( \arctan\!2(\sqrt {1 - x^{2} } ,x) = \arccos x, \) where −1≤ ≤ +1, one finds for ≡ (− d)/(1 − Δ) that \( \sqrt {1 - x^{2} } = \left| {b + c} \right|/(1 - \Updelta ). \) Thus,

$$ \begin{aligned} \tilde{\Upphi } & = \text{sgn} (b + c)\arccos \left( {\frac{a - d}{1 - \Updelta }} \right) \\ & = \text{sgn} (b + c)\arctan\!2\left( {\frac{|b + c|}{1 - \Updelta },\frac{a - d}{1 - \Updelta }} \right) \\ & = \arctan\!2(b + c,a - d) \\ & = \Upphi \\ \end{aligned} $$
(47)

concluding the proof that \( \tilde{\Upphi } = \Upphi \) provided the transmitter and receiver antenna bore sight vectors \( \hat{t}^{b} \) and \( \hat{r}^{b} \) lie in one plane.

Equation 8 is derived in the following way: with sin Ω = (e iΩ − e iΩ)/(2i) and cos Ω = (e iΩ + e iΩ)/2 we find

$$ \begin{aligned} a\sin \Upomega + b\cos \Upomega & = \left( {\frac{a}{2i} + \frac{b}{2}} \right)e^{i\Upomega } + \left( { - \frac{a}{2i} + \frac{b}{2}} \right)e^{ - i\Upomega } \\ & = \frac{1}{2}\sqrt {a^{2} + b^{2} } e^{ - i\arctan\!2(a,b)} e^{i\Upomega } + \frac{1}{2}\sqrt {a^{2} + b^{2} } e^{i\arctan\!2(a,b)} e^{ - i\Upomega } \\ & = \sqrt {a^{2} + b^{2} } \cos (\Upomega - \arctan\!2(a,b)) \\ \end{aligned} $$
(48)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyerle, G. Carrier phase wind-up in GPS reflectometry. GPS Solut 13, 191–198 (2009). https://doi.org/10.1007/s10291-008-0112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-008-0112-1

Keywords

Navigation