Skip to main content
Log in

CT-Based Radiomics and Machine Learning for Differentiating Benign, Borderline, and Early-Stage Malignant Ovarian Tumors

  • Published:
Journal of Imaging Informatics in Medicine Aims and scope Submit manuscript

Abstract

To explore the value of CT-based radiomics model in the differential diagnosis of benign ovarian tumors (BeOTs), borderline ovarian tumors (BOTs), and early malignant ovarian tumors (eMOTs). The retrospective research was conducted with pathologically confirmed 258 ovarian tumor patients from January 2014 to February 2021. The patients were randomly allocated to a training cohort (n = 198) and a test cohort (n = 60). By providing a three-dimensional (3D) characterization of the volume of interest (VOI) at the maximum level of images, 4238 radiomic features were extracted from the VOI per patient. The Wilcoxon–Mann–Whitney (WMW) test, least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM) were employed to select the radiomic features. Five machine learning (ML) algorithms were applied to construct three-class diagnostic models. Leave-one-out cross-validation (LOOCV) was implemented to evaluate the performance of the radiomics models. The test cohort was used to verify the generalization ability of the radiomics models. The receiver-operating characteristic (ROC) was used to evaluate diagnostic performance of radiomics model. Global and discrimination performance of five models was evaluated by average area under the ROC curve (AUC). The average ROC indicated that random forest (RF) diagnostic model in training cohort demonstrated the best diagnostic performance (micro/macro average AUC, 0.98/0.99), which was then confirmed with by LOOCV (micro/macro average AUC, 0.89/0.88) and external validation (test cohort) (micro/macro average AUC, 0.81/0.79). Our proposed CT-based radiomics diagnostic models may effectively assist in preoperatively differentiating BeOTs, BOTs, and eMOTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

Abbreviations

CT:

Computed tomography

BeOTs:

Benign ovarian tumors

BOTs:

Borderline ovarian tumors

eMOTs:

Early-stage malignant ovarian tumors

LASSO:

Least absolute shrinkage and selection operator

SVM:

Support vector machine

LOOCV:

Leave-one-out cross-validation

ML:

Five machine learning

ROC:

Receiver-operating characteristics

AUC:

Average area under the ROC curve

AI:

Artificial intelligence

ML:

Machine learning

PACS:

Picture archiving and communication system

PVP:

Portal-venous phase

DICOM:

Digital Imaging and Communications in Medicine

VOI:

Volume of interest

ICC:

Intraclass correlation coefficient

IBSI:

Image biomarker standardization initiative

WMW:

Wilcoxon-Mann-Whitney

LR:

Logistic regression

SNN:

Standard neutral network

RF:

Random forest

KNN:

k-nearest neighbors

DT:

Decision tree

FIGO:

Federation International of Gynecology and Obstetrics

CAD:

Computer-aided diagnosis

3D:

Three-dimentional

2D:

Two-dimentional

AI:

Artificial intelligence

IBSI:

Image biomarker standardization initiative

ICC:

Interclass correlation coefficient

Pre:

Precision

SENS:

Sensitivity

SPE:

Specificity

PVP:

Portal-venous phase

References

  1. Practice bulletin no. 174: evaluation and management of adnexal masses. Obstet Gynecol, 128(5): e210-e226,2016.

    Article  Google Scholar 

  2. Jung K. W., Won Y. J., Hong S., Kong H. J., Im J. S. and Seo H. G. Prediction of cancer incidence and mortality in Korea, 2021. Cancer Res Treat, 53(2): 316-322,2021.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Matulonis U. A., Sood A. K., Fallowfield L., Howitt B. E., Sehouli J. and Karlan B. Y. Ovarian cancer. Nat Rev Dis Primers, 2(16061,2016.

  4. Menon U., Gentry-Maharaj A., Burnell M., Singh N., Ryan A., Karpinskyj C., Carlino G., Taylor J., Massingham S. K., Raikou M., Kalsi J. K., Woolas R., Manchanda R., Arora R., Casey L., Dawnay A., Dobbs S., Leeson S., Mould T., Seif M. W., Sharma A., Williamson K., Liu Y., Fallowfield L., McGuire A. J., Campbell S., Skates S. J., Jacobs I. J. and Parmar M. Ovarian cancer population screening and mortality after long-Term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet, 397(10290): 2182-2193,2021.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mathieu K. B., Bedi D. G., Thrower S. L., Qayyum A. and Bast R. C., Jr. Screening for ovarian cancer: imaging challenges and opportunities for improvement. Ultrasound Obstet Gynecol, 51(3): 293-303,2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Della Corte L., Mercorio A., Serafino P., Viciglione F., Palumbo M., De Angelis M. C., Borgo M., Buonfantino C., Tesorone M., Bifulco G. and Giampaolino P. The challenging management of borderline ovarian tumors (BOTs) in women of childbearing age. Front Surg, 9(973034,2022.

  7. Shipeng G., Yongning C., Yadi Z., Chanyuan L. I. and Qifan J. [Comparison of serum cancer antigen 125, human epididymis protein 4, Roma, and Cph-I for diagnosis of ovarian cancer in Chinese patients with ovarian mass]. Nan Fang Yi Ke Da Xue Xue Bao, 39(12): 1393-1401,2019.

    PubMed  Google Scholar 

  8. Cheng H. Y., Zeng L., Ye X., Ma R. Q., Tang Z. J., Chu H. L., Zhao Y. M., Zhu L. R., Gao Y. N., Chang X. H. and Cui H. Age and menopausal status are important factors influencing the serum human epididymis secretory protein 4 level: a prospective cross-sectional study in healthy Chinese people. Chin Med J (Engl), 133(11): 1285-1291,2020.

    Article  CAS  PubMed  Google Scholar 

  9. Fernandes M. C., Nikolovski I., Long Roche K. and Lakhman Y. Ct of Ovarian cancer for primary treatment planning: what the surgeon needs to know-radiology in training. Radiology, 304(3): 516–526,2022.

  10. Wang S. Q., Li X., Cui J. L., Li H. X., Luk K. D. K. and Hu Y. Prediction of myelopathic level in cervical spondylotic myelopathy using diffusion tensor imaging. Journal of Magnetic Resonance Imaging, 41(6): 1682-1688,2015.

    Article  PubMed  Google Scholar 

  11. Wang S., Wang X., Shen Y., He B., Zhao X., Cheung W., Cheung J., Luk K. and Hu Y. An ensemble-based densely-connected deep learning system for assessment of skeletal maturity. IEEE Transactions on Systems, Man, and Cybernetics: Systems, PP(99): 1–12,

  12. Lei B., Liang E., Yang M., Yang P., Zhou F., Tan E. L., Lei Y., Liu C. M., Wang T. and Xiao X. Predicting clinical scores for Alzheimer’s disease based on joint and deep learning. Expert Systems with Application, Jan.): 187,2022.

  13. Li S., Liu J., Xiong Y., Pang P., Lei P., Zou H., Zhang M., Fan B. and Luo P. A Radiomics approach for automated diagnosis of ovarian neoplasm malignancy in computed tomography. Sci Rep, 11(1): 8730,2021.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu Y., Weng Q., Xia H., Chen T., Kong C., Chen W., Pang P., Xu M., Lu C. and Ji J. A radiomic nomogram based on arterial phase of Ct for differential diagnosis of ovarian cancer. Abdom Radiol (NY), 46(6): 2384-2392,2021.

    Article  PubMed  Google Scholar 

  15. Papanikolaou N., Matos C. and Koh D. M. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging, 20(1): 33,2020.

    Article  PubMed  PubMed Central  Google Scholar 

  16. van Timmeren J. E., Cester D., Tanadini-Lang S., Alkadhi H. and Baessler B. Radiomics in medical imaging-“how-to” guide and critical reflection. Insights Imaging, 11(1): 91,2020.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cuocolo R., Caruso M., Perillo T., Ugga L. and Petretta M. Machine learning in oncology: a clinical appraisal. Cancer Lett, 481(55–62,2020.

  18. Li J., Zhang T., Ma J., Zhang N., Zhang Z. and Ye Z. Machine-learning-based contrast-enhanced computed tomography radiomic analysis for categorization of ovarian tumors. Front Oncol, 12(934735,2022.

  19. Jan Y. T., Tsai P. S., Huang W. H., Chou L. Y., Huang S. C., Wang J. Z., Lu P. H., Lin D. C., Yen C. S., Teng J. P., Mok G. S. P., Shih C. T. and Wu T. H. Machine learning combined with radiomics and deep learning features extracted from Ct images: a novel Ai model to distinguish benign from malignant ovarian tumors. Insights Imaging, 14(1): 68,2023.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Song X. L., Ren J. L., Zhao D., Wang L., Ren H. and Niu J. Radiomics derived from dynamic contrast-enhanced MRI pharmacokinetic protocol features: the value of precision diagnosis ovarian neoplasms. Eur Radiol, 31(1): 368-378,2021.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y., Zhang H., Wang T., Yao L., Zhang G., Liu X., Yang G. and Yuan L. Deep learning for the ovarian lesion localization and discrimination between borderline and malignant ovarian tumors based on routine MR imaging. Sci Rep, 13(1): 2770,2023.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zwanenburg A., Vallières M., Abdalah M. A., Aerts H., Andrearczyk V., Apte A., Ashrafinia S., Bakas S., Beukinga R. J., Boellaard R., Bogowicz M., Boldrini L., Buvat I., Cook G. J. R., Davatzikos C., Depeursinge A., Desseroit M. C., Dinapoli N., Dinh C. V., Echegaray S., El Naqa I., Fedorov A. Y., Gatta R., Gillies R. J., Goh V., Götz M., Guckenberger M., Ha S. M., Hatt M., Isensee F., Lambin P., Leger S., Leijenaar R. T. H., Lenkowicz J., Lippert F., Losnegård A., Maier-Hein K. H., Morin O., Müller H., Napel S., Nioche C., Orlhac F., Pati S., Pfaehler E. A. G., Rahmim A., Rao A. U. K., Scherer J., Siddique M. M., Sijtsema N. M., Socarras Fernandez J., Spezi E., Steenbakkers R., Tanadini-Lang S., Thorwarth D., Troost E. G. C., Upadhaya T., Valentini V., van Dijk L. V., van Griethuysen J., van Velden F. H. P., Whybra P., Richter C. and Löck S. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology, 295(2): 328–338,2020.

  23. Song J., Shi J., Dong D., Fang M., Zhong W., Wang K., Wu N., Huang Y., Liu Z., Cheng Y., Gan Y., Zhou Y., Zhou P., Chen B., Liang C., Liu Z., Li W. and Tian J. A new approach to predict progression-free survival in stage Iv Egfr-mutant Nsclc patients with Egfr-Tki therapy. Clin Cancer Res, 24(15): 3583-3592,2018.

    Article  CAS  PubMed  Google Scholar 

  24. Collewet G., Strzelecki M. and Mariette F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging, 22(1): 81-91,2004.

    Article  CAS  PubMed  Google Scholar 

  25. Nakamoto T., Takahashi W., Haga A., Takahashi S., Kiryu S., Nawa K., Ohta T., Ozaki S., Nozawa Y., Tanaka S., Mukasa A. and Nakagawa K. Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis. Sci Rep, 9(1): 19411,2019.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Rosati A., Gueli Alletti S., Capozzi V. A., Mirandola M., Vargiu V., Fedele C., Uccella S. and Vascone C. Role of ultrasound in the detection of recurrent ovarian cancer: a review of the literature. Gland Surg, 9(4): 1092–1101,2020.

  27. Martínez-Más J., Bueno-Crespo A., Khazendar S., Remezal-Solano M., Martínez-Cendán J. P., Jassim S., Du H., Al Assam H., Bourne T. and Timmerman D. Evaluation of machine learning methods with Fourier transform features for classifying ovarian tumors based on ultrasound images. PLoS One, 14(7): e0219388,2019.

  28. Forstner R., Thomassin-Naggara I., Cunha T. M., Kinkel K., Masselli G., Kubik-Huch R., Spencer J. A. and Rockall A. ESUR Recommendations for MR imaging of the sonographically indeterminate adnexal mass: an update. Eur Radiol, 27(6): 2248-2257,2017.

    Article  PubMed  Google Scholar 

  29. Zhang H., Mao Y., Chen X., Wu G., Liu X., Zhang P., Bai Y., Lu P., Yao W., Wang Y., Yu J. and Zhang G. Magnetic resonance imaging radiomics in categorizing ovarian masses and predicting clinical outcome: a preliminary study. Eur Radiol, 29(7): 3358-3371,2019.

    Article  PubMed  Google Scholar 

  30. Wang G., Sun Y., Chen Y., Gao Q., Peng D., Lin H., Zhan Z., Liu Z. and Zhuo S. Rapid identification of human ovarian cancer in second harmonic generation images using radiomics feature analyses and tree-based pipeline optimization tool. J Biophotonics, 13(9): e202000050,2020.

    Article  PubMed  Google Scholar 

  31. Wang X. and Lu Z. Radiomics analysis of Pet and Ct components of (18)F-Fdg Pet/Ct imaging for prediction of progression-free survival in advanced high-grade serous ovarian cancer. Front Oncol, 11(638124,2021.

  32. Rizzo S., Botta F., Raimondi S., Origgi D., Buscarino V., Colarieti A., Tomao F., Aletti G., Zanagnolo V., Del Grande M., Colombo N. and Bellomi M. Radiomics of high-grade serous ovarian cancer: association between quantitative Ct features, residual tumour and disease progression within 12 months. Eur Radiol, 28(11): 4849-4859,2018.

    Article  PubMed  Google Scholar 

  33. Vargas H. A., Veeraraghavan H., Micco M., Nougaret S., Lakhman Y., Meier A. A., Sosa R., Soslow R. A., Levine D. A., Weigelt B., Aghajanian C., Hricak H., Deasy J., Snyder A. and Sala E. A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome. Eur Radiol, 27(9): 3991-4001,2017.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lu H., Arshad M., Thornton A., Avesani G., Cunnea P., Curry E., Kanavati F., Liang J., Nixon K., Williams S. T., Hassan M. A., Bowtell D. D. L., Gabra H., Fotopoulou C., Rockall A. and Aboagye E. O. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat Commun, 10(1): 764,2019.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zargari A., Du Y., Heidari M., Thai T. C., Gunderson C. C., Moore K., Mannel R. S., Liu H., Zheng B. and Qiu Y. Prediction of chemotherapy response in ovarian cancer patients using a new clustered quantitative image marker. Phys Med Biol, 63(15): 155020,2018.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wei W., Rong Y., Liu Z., Zhou B., Tang Z., Wang S., Dong D., Zang Y., Guo Y. and Tian J. Radiomics: a novel Ct-based method of predicting postoperative recurrence in ovarian cancer. Annu Int Conf IEEE Eng Med Biol Soc, 2018(4130–4133,2018.

  37. Vamvakas A., Williams S. C., Theodorou K., Kapsalaki E., Fountas K., Kappas C., Vassiou K. and Tsougos I. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Phys Med, 60(188–198,2019.

Download references

Acknowledgements

We appreciate Dong Xie and Zheng Wang for providing medical guidance to the manuscript.

Funding

This study was funded in part by grants from the National Natural Science Foundation of China (Grant No. 81560425), Guangxi Clinical Research Center for Medical Imaging Construction (Grant No. Guike AD 20238096), and Beijing Medical Award Foundation (Grant No. YXJL-2022–0665-0210).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: DS and CL Development of methodology: JC, LL, DS, and CL Acquisition of data: LL and ZH Analysis and interpretation of data: JC, LL, and ZH Writing, review, and/or revision of the manuscript: JC Administrative, technical, or material support: DS and CL Study supervision: DS and CL.

Corresponding authors

Correspondence to Danke Su or Chanzhen Liu.

Ethics declarations

Ethics Approval and Consent to Participate

The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of Guangxi Medical University Cancer Hospital (LW2022153). Written informed consent was obtained from individual or guardian participants.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Liu, L., He, Z. et al. CT-Based Radiomics and Machine Learning for Differentiating Benign, Borderline, and Early-Stage Malignant Ovarian Tumors. J Digit Imaging. Inform. med. 37, 180–195 (2024). https://doi.org/10.1007/s10278-023-00903-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-023-00903-z

Keywords

Navigation