AghaKouchak A, Farahmand A, Melton FS, Teixeira J, Anderson MC, Wardlow BD, Hain CR (2015) Remote sensing of drought: progress, challenges and opportunities. Rev Geophys 53:452–480. https://doi.org/10.1002/2014RG000456
Article
Google Scholar
Ahl D, Gower S, Burrows S, Shabanov N, Myneni R, Knyazikhin Y (2006) Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS. Remote Sens Environ 104:88–95. https://doi.org/10.1016/j.rse.2006.05.003
Article
Google Scholar
Allen WA, Gausman HW, Richardson AJ, Thomas JR (1969) Interaction of isotropic light with a compact plant leaf. J Opt Soc Am 59:1376–1379
CAS
Article
Google Scholar
Anderson CB (2018) Biodiversity monitoring, earth observations and the ecology of scale. Ecol Lett 21:1572–1585. https://doi.org/10.1111/ele.13106
Article
PubMed
Google Scholar
Asner GP, Martin RE (2009) Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests. Front Ecol Environ 7:269–276. https://doi.org/10.1890/070152
Article
Google Scholar
Asner GP, Martin RE, Ford AJ, Metcalfe DJ, Liddell MJ (2009) Leaf chemical and spectral diversity in Australian tropical forests. Ecol Appl 19:236–253. https://doi.org/10.1890/08-0023.1
Article
PubMed
Google Scholar
Asner GP, Martin RE, Knapp DE et al (2011) Spectroscopy of canopy chemicals in humid tropical forests. Remote Sens Environ 115:3587–3598. https://doi.org/10.1016/j.rse.2011.08.020
Article
Google Scholar
Badhwar GD, Verhoef W, Bunnik NJJ (1985) Comparative study of suits and sail canopy reflectance models. Remote Sens Environ 17:179–195. https://doi.org/10.1016/0034-4257(85)90073-2
Article
Google Scholar
Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
CAS
Article
PubMed
Google Scholar
Baldocchi D, Falge E, Gu L et al (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434. https://doi.org/10.1175/1520-0477(2001)082%3C2415:FANTTS%3E2.3.CO;2
Article
Google Scholar
Bannari A, Morin D, Bonn F, Huete AR (1995) A review of vegetation indices. Remote Sens Rev 13:95–120. https://doi.org/10.1080/02757259509532298
Article
Google Scholar
Bayat B, van der Tol C, Verhoef W (2018) Integrating satellite optical and thermal infrared observations for improving daily ecosystem functioning estimations during a drought episode. Remote Sens Environ 209:375–394. https://doi.org/10.1016/j.rse.2018.02.027
Article
Google Scholar
Burchard P, Bilger W, Weissenböck G (2000) Contribution of hydroxycinnamates and flavonoids to, epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380. https://doi.org/10.1046/j.1365-3040.2000.00633.x
CAS
Article
Google Scholar
Carter GA, Theisen AF, Mitchell RJ (1990) Chlorophyll fluorescence measured using the Fraunhofer line-depth principle and relationship to photosynthetic rate in the field. Plant Cell Environ 13:79–83. https://doi.org/10.1111/j.1365-3040.1990.tb01302.x
CAS
Article
Google Scholar
Carter GA, Jones JH, Mitchell RJ, Brewer CH (1996) Detection of solar-excited chlorophyll a fluorescence and leaf photosynthetic capacity using a Fraunhofer line radiometer. Remote Sens Environ 55:89–92. https://doi.org/10.1016/0034-4257(95)00192-1
Article
Google Scholar
Cavender-Bares J, Gamon JA, Townsend PA (2020) The use of remote sensing to enhance biodiversity monitoring and detection: A critical challenge for the twenty-first century. In: Cavender-Bares J, Gamon JA, Townsend PA (eds) Remote sensing of plant biodiversity. Springer Nature Switzerland, Cham, pp 1–12
Chapter
Google Scholar
Chapin FS III, Matson PA, Vitousek P (2011) Principles of terrestrial ecosystem ecology. Springer Science & Business Media, New York
Book
Google Scholar
Cias P, Dolman AJ, Bombelli A et al (2014) Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences 11:3547–3602. https://doi.org/10.5194/bg-11-3547-2014
CAS
Article
Google Scholar
Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365. https://doi.org/10.1016/j.tree.2007.04.003
Article
PubMed
Google Scholar
Dawson TP, Curran PJ, Plummer SE (1998) LIBERTY–modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sens Environ 65:50–60. https://doi.org/10.1016/S0034-4257(98)00007-8
Article
Google Scholar
Demarez V, Gastellu-Etchegorry JP, Mougin E et al (1999) Seasonal variation of leaf chlorophyll content of a temperate forest. Inversion of the PROSPECT model. Int J Remote Sens 20:879–894. https://doi.org/10.1080/014311699212975
Article
Google Scholar
Fang J, Guo Z, Hu H, Kato T, Muraoka H, Son Y (2014) Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob Change Biol 20:2019–2030. https://doi.org/10.1111/gcb.12512
Article
Google Scholar
Fensholt R, Sandholt I, Stisen S, Tucker C (2006) Analysing NDVI for the African continent using the geostationary meteosat second generation SEVIRI sensor. Remote Sens Environ 101:212–229. https://doi.org/10.1016/j.rse.2005.11.013
Article
Google Scholar
Feret JB, François C, Asner GP, Gitelson AA, Martin RE, Bidel LPR, Ustin SL, le Maire G, Jacquemoud S (2008) PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens Environ 112:3030–3043. https://doi.org/10.1016/j.rse.2008.02.012
Article
Google Scholar
Féret JB, Gitelson AA, Noble SD, Jacquemoud S (2017) PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens Environ 193:204–215. https://doi.org/10.1016/j.rse.2017.03.004
Article
Google Scholar
Field CB, Randerson JT, Malmström CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sens Environ 51:74–88. https://doi.org/10.1016/0034-4257(94)00066-V
Article
Google Scholar
Frankenberg C, Fisher JB, Worden J et al (2011) New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys Res Lett 38:L17706. https://doi.org/10.1029/2011GL048738
CAS
Article
Google Scholar
Friedlingstein P, Jones M, O’Sullivan M et al (2019) Global carbon budget 2019. Earth Syst Sci Data 11:1783–1838. https://doi.org/10.3929/ethz-b-000385668
Article
Google Scholar
Gamon JA, Penuelas J, Field C (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ 44:35–44
Article
Google Scholar
Gamon JA, Serrano L, Surfus JS (1997) The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112:492–501
CAS
Article
PubMed
Google Scholar
Gamon JA, Rahman AF, Dungan JL, Schildhauer M, Huemmrich KF (2006) Spectral Network (SpecNet)—what is it and why do we need it? Remote Sens Environ 103:227–235. https://doi.org/10.1016/j.rse.2006.04.003
Article
Google Scholar
Gamon JA, Huemmrich KF, Wong CYS, Ensminger I, Garrity S, Hollinger DY, Noormets A, Peñuelas J (2016) A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. PNAS 113:13087–13092. https://doi.org/10.1073/pnas.1606162113
CAS
Article
PubMed
PubMed Central
Google Scholar
Gamon JA, Somers B, Malenovský Z, Middleton EM, Rascher U, Schaepman ME (2019) Assessing vegetation function with imaging spectroscopy. Surv Geophys 40:489–513. https://doi.org/10.1007/s10712-019-09511-5
Article
Google Scholar
Garbulsky MF, Peñuelas J, Ogaya R, Filella I (2013) Leaf and stand-level carbon uptake of a Mediterranean forest estimated using the satellite-derived reflectance indices EVI and PRI. Int J Remote Sens 34:1282–1296. https://doi.org/10.1080/01431161.2012.718457
Article
Google Scholar
García M, Gajardo J, Riaño D, Zhao K, Martín P, Ustin S (2015) Canopy clumping appraisal using terrestrial and airborne laser scanning. Remote Sens Environ 161:78–88. https://doi.org/10.1016/j.rse.2015.01.030
Article
Google Scholar
Gates DM, Keegan HJ, Schleter JC, Weidner VR (1965) Spectral properties of plants. Appl Opt 4:11–20. https://doi.org/10.1364/AO.4.000011
Article
Google Scholar
Gatti RC, Callaghan T, Velichevskaya A et al (2019) Accelerating upward treeline shift in the Altai Mountains under last-century climate change. Sci Rep 9:7678
Article
Google Scholar
Gitelson AA, Merzlyak MN (1994a) Quantitative estimation of chlorophyll-a using reflectance spectra: experiments with autumn chestnut and maple leaves. J Photochem Photobiol B 22:247–252
CAS
Article
Google Scholar
Gitelson AA, Merzlyak MN (1994b) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol 143:286–292. https://doi.org/10.1016/S0176-1617(11)81633-0
CAS
Article
Google Scholar
Gitelson AA, Merzlyak MN (1998) Remote sensing of chlorophyll concentration in higher plant leaves. Adv Space Res 22:689–692. https://doi.org/10.1016/S0273-1177(97)01133-2
CAS
Article
Google Scholar
Gitelson AA, Merzlyak MN, Lichtenthaler HK (1996) Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. J Plant Physiol 148:501–508. https://doi.org/10.1016/S0176-1617(96)80285-9
CAS
Article
Google Scholar
Goerner A, Reichstein M, Tomelleri E, Hanan N, Rambal S, Papale D, Dragoni D, Schmullius C (2011) Remote sensing of ecosystem light use efficiency with MODIS-based PRI. Biogeosciences 8:189–202. https://doi.org/10.5194/bg-8-189-2011
Article
Google Scholar
Gough C, Vogel C, Schmid H, Su H, Curtis P (2008) Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agric For Meteorol 148:158–170. https://doi.org/10.1016/j.agrformet.2007.08.004
Article
Google Scholar
Hall FG, Botkin DB, Strebel DE, Woods KD, Goetz SJ (1991) Large-scale patterns of forest succession as determined by remote sensing. Ecology 72:628–640. https://doi.org/10.2307/2937203
Article
Google Scholar
Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. https://doi.org/10.1126/science.1244693
CAS
Article
PubMed
Google Scholar
Hikosaka K, Noda HM (2019) Modeling leaf CO2 assimilation and Photosystem II photochemistry from chlorophyll fluorescence and the photochemical reflectance index. Plant Cell Environ 42:730–739. https://doi.org/10.1111/pce.13461
CAS
Article
PubMed
Google Scholar
Hosoi F, Omasa K (2007) Factors contributing to accuracy in the estimation of the woody canopy leaf area density profile using 3D portable lidar imaging. J Exp Bot 58:3463–3473. https://doi.org/10.1093/jxb/erm203
CAS
Article
PubMed
Google Scholar
Ito A, Saitoh TM, Sasai T (2015) Synergies between observational and modeling studies at the Takayama site: toward a better understanding of processes in terrestrial ecosystems. Ecol Res 30:201–210. https://doi.org/10.1007/s11284-014-1205-7
Article
Google Scholar
Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. Remote Sens Environ 34:75–91. https://doi.org/10.1016/0034-4257(90)90100-Z
Article
Google Scholar
Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada PJ, Asner GP, François C, Ustin SL (2009) PROSPECT+SAIL models: a review of use for vegetation characterization. Remote Sens Environ 113:S56–S66. https://doi.org/10.1016/j.rse.2008.01.026
Article
Google Scholar
Jay S, Maupas F, Bendoula R, Gorretta N (2017) Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crops Res 210:33–46. https://doi.org/10.1016/j.fcr.2017.05.005
Article
Google Scholar
Joiner J, Yoshida Y, Vasilkov AP, Yoshida Y, Corp LA, Middleton EM (2011) First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8:637–651. https://doi.org/10.5194/bg-8-637-2011
CAS
Article
Google Scholar
Joiner J, Guanter L, Lindstrot R et al (2013) Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos Meas Tech 6:3883–3930. https://doi.org/10.5194/amtd-6-3883-2013
Article
Google Scholar
Kitajima K, Mulkey S, Wright SJ (2005) Variation in crown light utilization characteristics among tropical canopy trees. Ann Bot 95:535–547. https://doi.org/10.1093/aob/mci051
Article
PubMed
Google Scholar
Köehler P, Frankenberg C, Magney TS, Guanter L, Joiner J, Landgraf J (2018) Global retrievals of solar induced chlorophyll fluorescence with TROPOMI: first results and inter-sensor comparison to OCO-2. Geophys Res Lett 45:10456–10463. https://doi.org/10.1029/2018GL079031
CAS
Article
PubMed
Google Scholar
Lee JE, Frankenberg C, van der Tol C et al (2013) Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence. Proc R Soc B 280:20130171. https://doi.org/10.1098/rspb.2013.0171
Article
PubMed
PubMed Central
Google Scholar
Leuzinger S, Körner C (2007) Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agric For Meteorol 146:29–37. https://doi.org/10.1016/j.agrformet.2007.05.007
Article
Google Scholar
Melnikova I, Awaya Y, Saitoh TM, Muraoka H, Sasai T (2018) Estimation of leaf area index in a mountain forest of central Japan with a 30-m spatial resolution based on landsat operational land imager imagery: an application of a simple model for seasonal monitoring. Remote Sens 10:1–24. https://doi.org/10.3390/rs10020179
Article
Google Scholar
Meroni M, Colombo R, Panigada C (2004) Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sens Environ 92:195–206. https://doi.org/10.1016/j.rse.2004.06.005
Article
Google Scholar
Meroni M, Rossini M, Guanter L, Alonso L, Rascher U, Colombo R, Moreno J (2009) Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications. Remote Sens Environ 113:2037–2051. https://doi.org/10.1016/j.rse.2009.05.003
Article
Google Scholar
Merzlyak MN, Chivkunova OB, Solovchenko AE, Naqvi KR (2008) Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. J Exp Bot 59:3903–3911. https://doi.org/10.1093/jxb/ern230
CAS
Article
PubMed
PubMed Central
Google Scholar
Miura T, Nagai S, Takeuchi M, Ichii K, Yoshioka H (2019) Improved characterisation of vegetation and land surface seasonal dynamics in central japan with Himawari-8 hypertemporal data. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-52076-x
CAS
Article
Google Scholar
Miyazawa SI, Terashima I (2001) Slow development of leaf photosynthesis in an evergreen broad-leaved tree, Castanopsis sieboldii: relationships between leaf anatomical characteristics and photosynthetic rate. Plant Cell Environ 24:279–291. https://doi.org/10.1046/j.1365-3040.2001.00682.x
CAS
Article
Google Scholar
Monsi M, Saeki T (2005) On the factor light in plant communities and its importance for matter production. Ann Bot 95:549–567. https://doi.org/10.1093/aob/mci052(originally published in German in Japanese Journal of Botany 14:22–52,1953)
Article
PubMed
PubMed Central
Google Scholar
Moore B III, Crowell SMR, Rayner PJ et al (2018) The potential of the geostationary Carbon Cycle Observatory (GeoCarb) to provide multi-scale constraints on the carbon cycle in the Americas. Front Environ Sci 6:109. https://doi.org/10.3389/fenvs.2018.00109
Article
Google Scholar
Motohka T, Nasahara KN, Oguma H, Tsuchida S (2010) Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sens 2:2369–2387. https://doi.org/10.3390/rs2102369
Article
Google Scholar
Moya I, Camenen L, Evain S, Goulas Y, Cerovic ZG, Latouche G, Felxas J, Ounis A (2004) A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence. Remote Sens Environ 91:186–197. https://doi.org/10.1016/j.rse.2004.02.012
Article
Google Scholar
Muraoka H, Koizumi H (2005) Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest: Implication to the ecosystem carbon gain. Agric For Meteorol 134:39–59. https://doi.org/10.1016/j.agrformet.2005.08.013
Article
Google Scholar
Muraoka H, Koizumi H (2009) Satellite Ecology (SATECO)-linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function. J Plant Res 122:3–20. https://doi.org/10.1007/s10265-008-0188-2
Article
PubMed
Google Scholar
Muraoka H, Saigusa N, Nasahara KN, Noda H, Yoshino J, Saitoh TM, Nagai S, Murayma S, Koizumi H (2010) Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan. J Plant Res 123:563–576. https://doi.org/10.1007/s10265-009-0270-4
CAS
Article
PubMed
Google Scholar
Muraoka H, Ishii R, Nagai S, Suzuki R, Motohka T, Noda H, Hirota M, Nasahara KN, Oguma H, Muramatsu K (2012) Linking remote sensing and in situ ecosystem/biodiversity observations by “Satellite Ecology.” In: Nakano S, Yahara T, Nakashizuka T (eds) The biodiversity observation network in the Asia-Pacific region: toward further development of monitoring, ecological research monographs. Springer Japan, Tokyo, pp 277–308
Chapter
Google Scholar
Muraoka H, Noda HM, Nagai S, Motohka T, Saitoh TM, Nasahara KN, Saigusa N (2013) Spectral vegetation indices as the indicator of canopy photosynthetic productivity in a deciduous broadleaf forest. J Plant Ecol 6:393–407. https://doi.org/10.1093/jpe/rts037
Article
Google Scholar
Muraoka H, Saitoh TM, Nagai S (2015) Long-term and interdisciplinary research on forest ecosystem functions: challenges at Takayama site since 1993. Ecol Res 30:197–200. https://doi.org/10.1007/s11284-015-1251-9
Article
Google Scholar
Mussche S, Samson R, Nachtergale L, De Schrijver A, Lemeur R, Lust N (2001) A comparison of optical and direct methods for monitoring the seasonal dynamics of leaf area index in deciduous forests. Silva Fennica 35: 373–384. https://doi.org/10.14214/sf.575
Nagai S, Saigusa N, Muraoka H, Nasahara KN (2010) What makes the satellite-based EVI-GPP relationship unclear in a deciduous broad-leaved forest? Ecol Res 25:359–365. https://doi.org/10.1007/s11284-009-0663-9
Article
Google Scholar
Nagai S, Inoue T, Ohtsuka T, Kobayashi H, Kurumado K, Muraoka H, Nasahara KN (2014) Relationship between spatio-temporal characteristics of leaf-fall phenology and seasonal variations in near surface- and satellite-observed vegetation indices in a cool-temperate deciduous broad-leaved forest in Japan. Int J Remote Sens 35:3520–3536. https://doi.org/10.1080/01431161.2014.907937
Article
Google Scholar
Nagai S, Nasahara KN, Inoue T, Saitoh TM, Suzuki R (2016) Review: advances in in situ and satellite phenological observations in Japan. Int J Biometeorol 60:615–627. https://doi.org/10.1007/s00484-015-1053-3
Article
PubMed
Google Scholar
Nagai S, Nasahara KN, Yoshitake S, Saitoh TM (2017) Seasonality of leaf litter and leaf area index data for various tree species in a cool-temperate deciduous broad-leaved forest, Japan, 2005–2014. Ecol Res 32:297. https://doi.org/10.1007/s11284-017-1452-5
Article
Google Scholar
Nakaji T, Ide R, Takagi K, Kosugi Y, Ohkubo S, Nasahara KN, Saigusa N, Oguma H (2008) Utility of spectral vegetation indices for estimation of light conversion efficiency in coniferous forests in Japan. Agric For Meteorol 148:776–787. https://doi.org/10.1016/j.agrformet.2007.11.006
Article
Google Scholar
Nasahara KN, Nagai S (2015) Review: Development of an in situ observation network for terrestrial ecological remote sensing: the phenological eyes network (PEN). Ecol Res 30:211–223. https://doi.org/10.1007/s11284-014-1239-x
Article
Google Scholar
Nasahara KN, Muraoka H, Nagai S, Mikami H (2008) Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest. Agric For Meteorol 148:1136–1146. https://doi.org/10.1016/j.agrformet.2008.02.011
Article
Google Scholar
Niinemets Ü, Garía-Plazaola JI, Tosens T (2012) Photosynthesis during leaf development and ageing. In: Flexas J, Loreto F, Medrano H (eds) Terrestrial photosynthesis in a changing environment. A molecular, physiological and ecological approach. Cambridge University Express, Cambridge, pp 353–372
Chapter
Google Scholar
Noda HM, Motohka T, Murakami K, Muraoka H, Nasahara KN (2014) Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan. Ecol Res 29:111. https://doi.org/10.1007/s11284-013-1096-z
Article
Google Scholar
Noda HM, Muraoka H, Nasahara KN, Saigusa N, Murayama S, Koizumi H (2015) Phenology of leaf morphological, photosynthetic, and nitrogen use characteristics of canopy trees in a cool-temperate deciduous broadleaf forest at Takayama, central Japan. Ecol Res 30:247–266. https://doi.org/10.1007/s11284-014-1222-6
CAS
Article
Google Scholar
Noda HM, Muraoka H, Nasahara KN (2021) Phenology of leaf optical properties and their relationship to mesophyll development in cool-temperate deciduous broad-leaf trees. Agric For Meteorol 297:108236. https://doi.org/10.1016/j.agrformet.2020.108236
Article
Google Scholar
Ohtsuka T, Mo W, Satomura T, Inatomi M, Koizumi H (2007) Biometric based carbon flux measurements and net ecosystem production (NEP) in a temperate deciduous broad-leaved forest beneath a flux tower. Ecosystems 10:324–334. https://doi.org/10.1007/s10021-007-9017-z
CAS
Article
Google Scholar
Omasa K, Hosoi F, Konishi A (2007) 3D lidar imaging for detecting and understanding plant responses and canopy structure. J Exp Bot 58:881–898. https://doi.org/10.1093/jxb/erl142
CAS
Article
PubMed
Google Scholar
Osmond CB, Chow WS (1988) Ecology of photosynthesis in the sun and shade: summary and prognostications. Aust J Plant Physiol 15:1–9. https://doi.org/10.1071/PP9880001
CAS
Article
Google Scholar
Owen KE, Tenhunen J, Reichstein M et al (2007) Linking flux network measurements to continental scale simulations: ecosystem carbon dioxide exchange capacity under non-water-stressed conditions. Glob Change Biol 13:734–760. https://doi.org/10.1111/j.1365-2486.2007.01326.x
Article
Google Scholar
Peterson DL, Aber JD, Matson PA, Card DH, Swanberg N, Wessman C, Spanner M (1988) Remote sensing of forest canopy and leaf biochemical contents. Remote Sens Environ 24:85–108. https://doi.org/10.1016/0034-4257(88)90007-7
Article
Google Scholar
Pettorelli N, Schulte to Bühne H, Tulloch A, et al (2018) Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sens Ecol Conserv 4:71–93. https://doi.org/10.1002/rse2.59
Article
Google Scholar
Piao S, Liu Q, Chen A et al (2019) Plant phenology and global climate change: Current progresses and challenges. Glob Change Biol 25:1922–1940. https://doi.org/10.1111/gcb.14619
Article
Google Scholar
Plascyk JA (1975) The MK II Fraunhofer line discriminator (FLD -II) for airborne and orbital remote sensing of solar-stimulated luminescence. Opt Eng 14:339–346. https://doi.org/10.1117/12.7971842
Article
Google Scholar
Porcar-Castell A, Tyystjärvi E, Atherton J, Van Der Tol C, Flexas J, Pfündel EE, Moreno J, Frankenberg C, Berry JA (2014) Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J Exp Bot 65:4065–4095. https://doi.org/10.1093/jxb/eru191
CAS
Article
PubMed
Google Scholar
Qi J, Inoue Y, Wiangwang N (2012) Hyperspectral remote sensing in global change studies. In: Thenkabail PS, Lyon JG, Huete A (eds) Hyperspectral remote sensing of vegetation. CRC Press, Boca Raton, pp 69–89
Google Scholar
Rahman AF, Cordova VD, Gamon JA, Schmid HP, Sims DA (2004) Potential of MODIS ocean bands for estimating CO2 flux from terrestrial vegetation: a novel approach. Geophys Res Lett 31:L10503. https://doi.org/10.1029/2004GL019778
CAS
Article
Google Scholar
Rascher U, Gioli B, Miglietta F (2008) FLEX—Fluorescence Explorer: A remote sensing approach to quantify spatio-temporal variations of photosynthetic efficiency from space. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the Sun: 14th international congress on photosynthesis, Springer, Berlin, pp 1387–1390
Reed BC, White M, Brown JF (2003) Remote sensing of phenology. In: Schwartz MD (ed) Phenology: an integrative environmental science. Kluwer Academic Publishers, Dordrecht, pp 365–381
Chapter
Google Scholar
Reich PB (2012) Key canopy traits drive forest productivity. Proc R Soc B Biol Sci 279:2128–2134. https://doi.org/10.1098/rspb.2011.2270
Article
Google Scholar
Reichstein M, Ciais P, Papale D et al (2007) Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Glob Change Biol 13:634–651. https://doi.org/10.1111/j.1365-2486.2006.01224.x
Article
Google Scholar
Reichstein M, Bahn M, Ciais P (2013) Climate extremes and the carbon cycle. Nature 500:287–295. https://doi.org/10.1038/nature12350
CAS
Article
PubMed
Google Scholar
Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173. https://doi.org/10.1016/j.agrformet.2012.09.012
Article
Google Scholar
Rogers A, Medlyn BE, Dukes JS et al (2017) A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol 213:22–42. https://doi.org/10.1111/nph.14283
Article
PubMed
Google Scholar
Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54:547–560. https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
Article
Google Scholar
Saigusa N, Yamamoto S, Murayama S, Kondo H (2005) Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agric For Meteorol 134:4–16. https://doi.org/10.1016/j.agrformet.2005.08.016
Article
Google Scholar
Saigusa N, Ichii K, Murakami H (2010) Impact of meteorological anomalies in the 2003 summer on gross primary productivity in East Asia. Biogeosciences 7:641–655. https://doi.org/10.5194/bg-7-641-2010
Article
Google Scholar
Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354. https://doi.org/10.1016/S0034-4257(02)00010-X
Article
Google Scholar
Sims DA, Pearcy RW (1992) Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light. Am J Bot 79:449–455. https://doi.org/10.2307/2445158
Article
Google Scholar
Slaton MR, Hunt ER Jr, Smith WK (2001) Estimating near-infrared leaf reflectance from leaf structural characteristics. Am J Bot 88:278–284. https://doi.org/10.2307/2657019
CAS
Article
PubMed
Google Scholar
Stöckli R, Vidale PL (2004) European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int J Remote Sens 25:3303–3330. https://doi.org/10.1080/01431160310001618149
Article
Google Scholar
Stuckens J, Verstraeten WW, Delalieux S, Swennen R, Coppin P (2009) A dorsiventral leaf radiative transfer model: development, validation and improved model inversion techniques. Remote Sens Environ 113:2560–2573. https://doi.org/10.1016/j.rse.2009.07.014
Article
Google Scholar
Suits GH (1972) The calculation of the directional reflectance of a vegetative canopy. Remote Sens Environ 2:117–125. https://doi.org/10.1016/0034-4257(71)90085-X
Article
Google Scholar
Sun Y, Frankenberg C, Wood JD et al (2017) OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358:6360. https://doi.org/10.1126/science.aam5747
CAS
Article
Google Scholar
Tang J, Körner C, Muraoka H, Piao S, Shen M, Thackeray SJ, Yang X (2016) Emerging opportunities and challenges in phenology: a review. Ecosphere 7:e01436. https://doi.org/10.1002/ecs2.1436
Article
Google Scholar
Tichá I (1985) Ontogeny of leaf morphology and anatomy. In: Sesták Z (ed) Photosynthesis during leaf development. Academia Praha, Prague, pp 16–50
Chapter
Google Scholar
Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150. https://doi.org/10.1016/0034-4257(79)90013-0
Article
Google Scholar
Ustin SL, Gamon JA (2010) Remote sensing of plant functional types. New Phytol 186:795–816. https://doi.org/10.1111/j.1469-8137.2010.03284.x
Article
PubMed
Google Scholar
Ustin SL, Jacquemoud S, Govaerts Y (2001) Simulation of photon transport in a three-dimensional leaf. Plant Cell Environ 24:1095–1103. https://doi.org/10.1046/j.0016-8025.2001.00762.x
Article
Google Scholar
Ustin SL, Roberts DA, Gamon JA, Gregory P, Green RO (2004) Using Imaging spectroscopy to study ecosystem processes and properties. Bioscience 54:523–534. https://doi.org/10.1641/0006-3568(2004)054[0523:UISTSE]2.0.CO;2
Article
Google Scholar
Verhoef W (1984) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ 16:125–141. https://doi.org/10.1016/0034-4257(84)90057-9
Article
Google Scholar
Vihervaara P, Auvinen AP, Mononen L et al (2017) How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob Ecol Conserv 10:43–59. https://doi.org/10.1016/j.gecco.2017.01.007
Article
Google Scholar
Vogelmann T (1993) Plant tissue optics. Annu Rev Plant Biol 44:231–251. https://doi.org/10.1146/annurev.arplant.44.1.231
Article
Google Scholar
Walther G, Post E, Convey P, Menzel A, Parmesank C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological response to recent climate change. Nature 416:389–395. https://doi.org/10.1038/416389a
CAS
Article
PubMed
Google Scholar
Wang Q, Adiku S, Tßenhunen J, Granier A (2005) On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens Environ 94:244–255. https://doi.org/10.1016/j.rse.2004.10.006
Article
Google Scholar
Wang X, Wang T, Liu D, Guo H, Huang H, Zhao Y (2017) Moisture-induced greening of the South Asia over the past three decades. Glob Change Biol 23:4995–5005. https://doi.org/10.1111/gcb.13762
Article
Google Scholar
Wessman C, Aber J, Peterson D, Melillo J (1988) Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems. Nature 335:154–156
Article
Google Scholar
Xiao X, Zhang Q, Braswell B, Urbanski S, Boles S, Wofsy S, Moore B, Ojima D (2004) Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens Environ 91:256–270. https://doi.org/10.1016/j.rse.2004.03.010
Article
Google Scholar
Yamada N, Fujimura S (1991) Nondestructive measurement of chlorophyll pigment content in plant leaves from three-color reflectance and transmittance. Appl Optics 30:3964. https://doi.org/10.1364/ao.30.003964
CAS
Article
Google Scholar
Yamamoto S, Murayama S, Saigusa N, Kondo H (1999) Seasonal and inter-annual variation of CO2 flux between a temperate forest and the atmosphere in Japan. Tellus B 51:402–413. https://doi.org/10.3402/tellusb.v51i2.16314
Article
Google Scholar
Zellweger F, De Frenne P, Lenoir J, Rocchini D, Coomes D (2019) Advances in microclimate ecology arising from remote sensing. Trends Ecol Evol 34:327–341. https://doi.org/10.1016/j.tree.2018.12.012
Article
PubMed
Google Scholar
Zhang X, Friedl M, Schaaf C (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475. https://doi.org/10.1016/S0034-4257(02)00135-9
Article
Google Scholar
Zhang X, Friedl MA, Schaaf CB, Strahler AH (2004) Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Glob Change Biol 10:1133–1145. https://doi.org/10.1111/j.1529-8817.2003.00784.x
Article
Google Scholar
Zhang Q, Xiao X, Braswell B, Linder E, Baret F, Moore B (2005) Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens Environ 99:357–371. https://doi.org/10.1016/j.rse.2005.09.009
Article
Google Scholar
Zhang X, Friedl MA, Schaaf CB (2009) Sensitivity of vegetation phenology detection to the temporal resolution of satellite data. Int J Remote Sens 30:2061–2074. https://doi.org/10.1080/01431160802549237
Article
Google Scholar
Zhu X, Skidmore AK, Wang T, Liu J, Darvishzadeh R, Shi Y, Premier J, Heurich M (2018) Improving leaf area index (LAI) estimation by correcting for clumping and woody effects using terrestrial laser scanning. Agric For Meteorol 263:276–286. https://doi.org/10.1016/j.agrformet.2018.08.026
Article
Google Scholar