Skip to main content

Advertisement

Log in

Spectral Reflectance and Vegetation Index Changes in Deciduous Forest Foliage Following Tree Removal: Potential for Deforestation Monitoring

  • Published:
Journal of Applied Spectroscopy Aims and scope

It is important to detect and quantify deforestation to guide strategic decisions regarding environment, socioeconomic development, and climate change. In the present study, we conducted a field experiment to examine spectral reflectance and vegetation index changes in poplar and locust tree foliage with different leaf area indices over the course of three sunny days, following tree removal from the canopy. The spectral reflectance of foliage from harvested trees was measured using an ASD FieldSpec Prospectroradiometer; synchronous meteorological data were also obtained. We found that reflectance in short-wave infrared and red-edge reflectance was more time sensitive after tree removal than reflectance in other spectral regions, and that the normalized difference water index (NDWI) and the red-edge chlorophyll index (CIRE) were the preferred indicators of these changes from several indices evaluated. Synthesized meteorological environments were found to influence water and chlorophyll contents after tree removal, and this subsequently changed the spectral canopy reflectance. Our results indicate the potential for such tree removal to be detected with NDWI or CIRE from the second day of a deforestation event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. UNFCC (United Nations Framework Convention on Climate Change). Reducing emissions from deforestation in developing coun tries: approaches to stimulate action, Fact sheet. United Nations Framework Convention on Climate Change, Geneva, Switzerland (2011).

  2. Y. Malhi, T. Roberts, R. A. Betts, T. J. Killeen, W. Li, and C. A. Nobre, Science, 319, 169–172 (2009).

    Article  ADS  Google Scholar 

  3. D. Armenteras, N. Rodríguez, J. Retana, and M. Morales, Change, 11, 693–705 (2011).

    Google Scholar 

  4. G. Clovis, R. Fety, G. Valéry, V. Romuald, B. Martial, and V. Ghislain, Remote Sens. Environ., 139, 68–80 (2013).

    Article  Google Scholar 

  5. R. A. Houghton, Tropical Deforestation as a Source of Greenhouse Gas Emissions. In Tropical Deforestation and Climate Change, Ed. Paulo Moutinho and Stephan Schwartzman, 13–21. Belém and Pará, Brazil/Washington, D.C.: Instituto de Pesquisa Ambiental da Amazônia and Environmental Defense (2005).

  6. W. F. Laurance, Biol. Conserv., 91, 109–117 (1999).

    Article  Google Scholar 

  7. F. Achard, H. D. Eva, S. J. Hans, and P. Mayaux, Science, 297, 999–1003 (2002).

    Article  ADS  Google Scholar 

  8. H. J. Geist and E. F. Lambin, BioScience, 52, 143–150 (2002).

    Article  Google Scholar 

  9. I. Laureysensa, L. De Temmermanb, T. Hastira, M. Van Gyselc, and R. Ceulemans, Environ. Pollut., 133, 541–551 (2005).

    Article  Google Scholar 

  10. S. Ramesh, V. L. Alexandre, L. D. Kenneth, and E. K.Vladimir, Agr. Ecosyst. Environ., 117, 128–134 (2006).

    Article  Google Scholar 

  11. H. Noriko, H. Martin, D. S. Veronique, S. D. Ruth, B. Maria, V. Louis, A. Arild, and R. Erika, Environ. Res. Lett., 7, 044009 (2012).

    Article  Google Scholar 

  12. R. DeFries, F. Achard, S. Brown, M. Herold, D. Murdiyarso, B. Schlamadinger, and C. de Souza, Environ. Sci. Policy, 10, 385–394 (2007).

    Article  Google Scholar 

  13. D. Baudouin, B. Patrick, and D. Pierre, Remote Sens. Environ., 102, 1–11 (2006).

    Article  Google Scholar 

  14. M. Takeshi, S. Masanobu, U. Yumiko, and S. Budi, Remote Sens. Environ., 155, 79–88 (2014).

    Article  Google Scholar 

  15. S. M. Damien, E. K. Robert, Z. Yang, B. Justin, N. K. Olga, and A. F. Mark, Remote Sens. Environ., 151, 114–123 (2014).

    Article  Google Scholar 

  16. P. Mui-How, T. Satoshi, F. Naoyuki, and S. L. Jung, J. Environ. Manag., 88, 784–795 (2008).

    Article  Google Scholar 

  17. R. Johannes, V. Jan, H. Dirk, and H. Martin, Remote Sens. Environ., 156, 276–293 (2015).

    Article  Google Scholar 

  18. P. Q. Carlos, S. A. Arturo, and M. E. Mario, Remote Sens. Environ., 97, 150–159 (2013).

    Google Scholar 

  19. G. Clovis, R. Fety, G. Valéry, V. Romuald, B. Martial, and V. Ghislain, Remote Sens. Environ., 139, 68–80 (2013).

    Article  Google Scholar 

  20. P. M. How, T. Satoshi, F. Naoyuki, and S. L. Jung, J. Environ. Manag., 88, 784–795 (2008).

  21. D. Peng, A. R. Huete, J. Huang, F. Wang, and H. Sun, Int. J. Appl. Earth Observ. Geoinform., 13, 13–23 (2011).

    Article  ADS  Google Scholar 

  22. P. S. Thenkabail, J. G. Lyon, and A. R. Huete, Perroy, 309–327 (2012).

  23. W. Rouse, R. H. Haas, J. A. Schell, and D. W. Deering, Third ERTS-1 Symposium, Washington DC:NASA SP-351, December 10–14, 1973, 309–317 (1974).

  24. A. R. Huete, H. Q. Liu, K. Batchily, and W. VanLeeuwen, Remote Sens. Environ., 59, 440–451 (1997).

    Article  Google Scholar 

  25. B. Gao, Remote Sens. Environ., 58, 257–266 (1996).

    Article  Google Scholar 

  26. P. J. Zarco-Tejada, C. A. Rueda, and S. L. Ustin, Remote Sens. Environ., 85, 109–124 (2003).

    Article  Google Scholar 

  27. A. A. Gitelson, G. P. Keydan, and M. N. Merzlyak, Geophys. Res. Lett., 33, L11402 (2006).

    Article  ADS  Google Scholar 

  28. J. A. Gamon, L. Serrano, and J. S. Surfus, Oecologia, 112, 492–501 (1997).

    Article  Google Scholar 

  29. C. Liang, G. Zheng, N. Zhu, Z. Tian, S. Lu, and Y. Chen, Build. Environ., 46, 2472–2479 (2011).

    Article  Google Scholar 

  30. S. Z. Dobrowski, J. C. Pushnik, P. J. Zarco-Tejada, and S. L. Ustin, Remote Sens. Environ., 97, 403–414 (2005).

    Article  Google Scholar 

  31. H. Millán, B. Ghanbarian-Alavijeh, and I. García-Fornaris, Atmos. Res., 98, 89–101 (2010).

    Article  Google Scholar 

  32. L. Eklundh, T. Johansson, and S. Solberg, Remote Sens. Environ., 113, 1566–1573 (2009).

    Article  Google Scholar 

  33. D. M. Muchoney and B. N. Haack, Remote Sens., 60, 1243–1251 (1994).

    Google Scholar 

  34. K. M. de Beurs and P. A. Townsend, Remote Sens. Environ., 112, 3983–3990 (2008).

    Article  Google Scholar 

  35. W. Martin, Q. Shaun, U. Yumiko, S. Michael, and Y. Kokok, Remote Sens. Environ., 124, 83–98 (2012).

    Article  Google Scholar 

  36. M. C. Hansen, S. V. Stehman, P. V. Potapov, B. Arunarwati, F. Stolle, and K. W. Pittman, Environ. Res. Lett., 4, 034001 (2009).

    Article  ADS  Google Scholar 

  37. M. Broich, M. C. Hansen, F. Stolle, P. V. Potapov, B. Arunarwati, and B. Adusel, Environ. Res. Lett., 6, 014010–014019 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Peng.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 83, No. 2, p. 336, March–April, 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, D., Hu, Y. & Li, Z. Spectral Reflectance and Vegetation Index Changes in Deciduous Forest Foliage Following Tree Removal: Potential for Deforestation Monitoring. J Appl Spectrosc 83, 330–337 (2016). https://doi.org/10.1007/s10812-016-0291-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0291-4

Keywords

Navigation