Skip to main content

Overexpression of KcNHX1 gene confers tolerance to multiple abiotic stresses in Arabidopsis thaliana

Abstract

Abiotic stresses such as drought, salinity, and heat affect plant growth and development. Karelinia caspica is a unique perennial herb that grows in desert area for a long time and has strong tolerance to environmental stresses. In order to explore the functions of the Na+/H+ antiporter gene from eremophyte K. caspica (KcNHX1) in the abiotic stress response of K. caspica and the underlying regulatory mechanisms, we constructed a vector overexpressing KcNHX1 and transformed it into Arabidopsis thaliana. The physiological results showed that the overexpression of KcNHX1 in A. thaliana not only enhanced the plant's tolerance to salt stress, but also enhanced its tolerance to drought and heat stress at the seedling stage. In addition, KcNHX1-overexpressing plants exhibited enhanced reproductive growth under high temperature, which was mediated by increased auxin accumulation. Taken together, our results indicate that KcNHX1 from an eremophyte can be used as a candidate gene to improve multiple stress tolerance in other plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

IAA:

Indole-3-acetic acid

MDA:

Malondialdehyde

POD:

Peroxidases

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    CAS  Article  Google Scholar 

  • Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36:229–239

    CAS  Article  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    CAS  Article  Google Scholar 

  • Craig plett D, Møller IS (2010) Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell Environ 33:612–626

    Article  Google Scholar 

  • Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S (2011) Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol 155:589–602

    CAS  Article  Google Scholar 

  • Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta 1446:149–155

    CAS  Article  Google Scholar 

  • Gouiaa S, Khoudi H, Leidi EO, Pardo JM, Masmoudi K (2012) Expression of wheat Na(+)/H(+) antiporter TNHXS1 and H(+)- pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol 79:137–155

    CAS  Article  Google Scholar 

  • Jiang X, Leidi EO, Pardo JM (2010) How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signal Behav 5:792–795

    CAS  Article  Google Scholar 

  • Kobayashi S, Abe N, Yoshida KT, Liu S, Takano T (2012) Molecular cloning and characterization of plasma membrane- and vacuolar-type Na(+)/H(+) antiporters of an alkaline-salt-tolerant monocot, Puccinellia tenuiflora. J Plant Res 125:587–594

    CAS  Article  Google Scholar 

  • Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189:54–81

    CAS  Article  Google Scholar 

  • Lei J, Lizhe A (2004) Studies of desalting ability and desalting structure in Karelinia caspica. Acta Botanica Boreali-Occidentalia Sinica 24:510–515

    Google Scholar 

  • Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola R (2005) Arabidopsis H+ - PPase AVP1 regulates auxin mediated organ development. Science 310:121–125

    CAS  Article  Google Scholar 

  • Liu L, Zeng Y, Pan X, Zhang F (2012) Isolation, molecular characterization, and functional analysis of the vacuolar Na+/H+ antiporter genes from the halophyte Karelinia caspica. Mol Biol Rep 39:7193–7202

    CAS  Article  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    CAS  Article  Google Scholar 

  • Nur T, Ben-Arie R, Altman A (1986) Involvement of divalent cations in maintaining cell membrane integrity in stressed apple fruit tissues. J Plant Physiol 125:47–60

    CAS  Article  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99:8436–8441

    CAS  Article  Google Scholar 

  • Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim WY, Ali Z, Fujii H, Mendoza I, Yun DJ, Zhu JK, Pardo JM (2011) Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci USA 108:2611–2616

    CAS  Article  Google Scholar 

  • Rohman MM, Islam MR, Monsur MB, Amiruzzaman M, Fujita M, Hasanuzzaman M (2019) Trehalose protects maize plants from salt stress and phosphorus deficiency. Plants (Basel) 8(568):1–12

    Google Scholar 

  • Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA 107:8569–8574

    CAS  Article  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    CAS  Article  Google Scholar 

  • Tu LL, Zhang XL, Liang SG, Liu DQ, Zhu LF, Zeng FC, Nie YC, Guo XP, Deng FL, Tan JF, Xu L (2007) Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep 26:1309–1320

    CAS  Article  Google Scholar 

  • van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:403–433

    Article  Google Scholar 

  • Wang Y, He J, Zhao X, Zhang H, Deng F, Jia X, Liu C (2009) Comparison of salt-tolerance and drought-tolerance of two desert plants (Karelinia caspica and Suaeda turkestanica Litw.) in Tarim. Genom Appl Biol 28:1128–1134

    Google Scholar 

  • Wang L-T, Chen Y-R, Yin L-K, Bai X (2010) The influences on the fluctuations of Karelinia caspica community under surface water-overflowing disturbance, western China. 2010 second IITA international conference on geoscience and remote sensing, vol 2. IEEE, pp 567–570

    Google Scholar 

  • Xi J, Zhang F, Mao D (2006) Species diversity and distribution of halophytic vegetation in Xinjiang. Scientia Silvae Sinicae 42:6

    Google Scholar 

  • Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z (2009) Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    CAS  Article  Google Scholar 

  • Zhang YM, Liu ZH, Wen ZY, Zhang HM, Yang F, Guo XL (2012) The vacuolar Na(+)-H(+) antiport gene TaNHX2 confers salt tolerance on transgenic alfalfa (Medicago sativa). Funct Plant Biol 39:708–716

    CAS  Article  Google Scholar 

  • Zhao F, Wang Z, Zhang Q, Zhao Y, Zhang H (2006) Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H + antiporter gene from Suaeda salsa. J Plant Res 119:95–104

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The work was funded by National Natural Science Foundation of China (31660085 and 31460071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1005 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Guo, Y., Li, F. et al. Overexpression of KcNHX1 gene confers tolerance to multiple abiotic stresses in Arabidopsis thaliana. J Plant Res 134, 613–623 (2021). https://doi.org/10.1007/s10265-021-01280-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01280-w

Keywords

  • Abiotic stress
  • Karelinia caspica
  • KcNHX1
  • Na+/H+ antiporter
  • Tolerance to heat stress