Skip to main content
Log in

The responses of Vitreoscilla hemoglobin-expressing hybrid aspen (Populus tremula × tremuloides) exposed to 24-h herbivory: expression of hemoglobin and stress-related genes in exposed and nonorthostichous leaves

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The responses of transcriptome and phenolic compounds were determined with Populus tremula L. × Populus tremuloides Michx. expressing the hemoglobin (Hb) of Vitreoscilla (VHb) and non-transformant (wt) line. After 24-h exposure of leaves to Conistra vaccinii L., the transcript levels of endogenous non-symbiotic class 1 Hb (PttHb1) and truncated Hb (PttTrHb) genes were modestly reduced and increased, respectively, in both wt and VHb-expressing line. Besides the herbivory exposed leaves showing the most significant transcriptome changes, alterations were also detected in the transcriptome of nonorthostichous leaves positioned directly above the exposed leaves. Both wt and VHb-expressing line displayed similar herbivory-induced effects on gene expression, although the extent of responses was more pronounced in the wt than in the VHb-expressing line. The contents of phenolic compounds were not altered due to herbivory and they were alike in the wt and VHb-expressing line. In addition, we determined the relative growth rates (RGRs) of Orthosia gothica L., Ectropis crepuscularia Denis & Schiff. and Orgyia antiqua L. larvae, and found no variation in the RGRs between the lines. Thus, VHb-expressing P. tremula × tremuloides lines showed to be comparable with wt in regards to the food quality of leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Appleby C (1984) Leghemoglobin and Rhizobium respiration. Annu Rev Plant Physiol Plant Mol Biol 35:443–478. doi:10.1146/annurev.pp.35.060184.002303

    Article  CAS  Google Scholar 

  • Arnold TM, Schultz JC (2002) Induced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of Populus. Oecologia 130:585–593. doi:10.1007/s00442-001-0839-7

    Article  Google Scholar 

  • Babst BA, Ferrieri RA, Thorpe MR, Orians CM (2008) Lymantria dispar herbivory induces rapid changes in carbon transport and partitioning in Populus nigra. Entomol Exp Appl 128:117–125. doi:10.1111/j.1570-7458.2008.00698.x

    Article  CAS  Google Scholar 

  • Babst BA, Sjödin A, Jansson S, Orians CM (2009) Local and systemic transcriptome responses to herbivory and jasmonic acid in Populus. Tree Genet Genomes 5:459–474. doi:10.1007/s11295-009-0200-6

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300. doi:10.2307/2346101

    Google Scholar 

  • Boerman SJ, Webster DA (1982) Control of heme content in Vitreoscilla by oxygen. J Gen Appl Microbiol 28:35–43

    Article  CAS  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580. doi:10.1146/annurev.phyto.41.052002.095505

    Article  PubMed  CAS  Google Scholar 

  • Brosché M, Vinocur B, Alatalo ER, Lamminmäki A, Teichmann T, Ottow EA, Djilianov D, Afif D, Bogeat-Triboulot MB, Altman A, Polle A, Dreyer E, Rudd S, Lars P, Auvinen P, Kangasjärvi J (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol 6:R101. doi:10.1186/gb-2005-6-12-r101

    Article  PubMed  Google Scholar 

  • Bustos-Sanmamed P, Tovar-Méndez A, Crespi M, Sato S, Tabata S, Becana M (2011) Regulation of nonsymbiotic and truncated hemoglobin genes of Lotus japonicus in plant organs and in response to nitric oxide and hormones. New Phytol 189:765–776. doi:10.1111/j.1469-8137.2010.03527.x

    Article  PubMed  CAS  Google Scholar 

  • Chen M (2008) Inducible direct plant defense against insect herbivores: a review. Insect Sci 15:101–114. doi:10.1111/j.1744-7917.2008.00190.x

    Article  Google Scholar 

  • Chen F, Liu C, Tschaplinski TJ, Zhao N (2009) Genomics of secondary metabolism in Populus: interactions with biotic and abiotic environments. Crit Rev Plant Sci 28:375–392. doi:10.1080/07352680903241279

    Article  CAS  Google Scholar 

  • Chi P, Webster DA, Stark BC (2009) Vitreoscilla hemoglobin aids respiration under hypoxic conditions in its native host. Microbiol Res 164:267–275. doi:10.1016/j.micres.2006.11.018

    Article  PubMed  CAS  Google Scholar 

  • Christopher ME, Miranda M, Major IT, Constabel CP (2004) Gene expression profiling of systemically wound-induced defenses in hybrid poplar. Planta 219:936–947. doi:10.1007/s00425-004-1297-3

    Article  PubMed  CAS  Google Scholar 

  • Clausen TP, Reichardt PB, Bryant JP, Werner RA, Post K, Frisby K (1989) Chemical model for short-term induction in quaking aspen (Populus tremuloides) foliage against herbivores. J Chem Ecol 15:2335–2346. doi:10.1007/BF01012085

    Article  CAS  Google Scholar 

  • Constabel CP, Major IT (2005) Molecular biology and biochemistry of induced insect defense in Populus. In: Romeo J (ed) Recent advances in phytochemistry, vol. 39. Chemical Ecology and Phytochemistry of Forest Ecosystems. Elsevier Academic Press, Amsterdam, pp. 119–143

  • Cooke JEK, Weih M (2005) Nitrogen storage and seasonal nitrogen cycling in Populus: bridging molecular physiology and ecophysiology. New Phytol 167:19–30. doi:10.1111/j.1469-8137.2005.01451.x

    Article  PubMed  CAS  Google Scholar 

  • Dikshit KL, Dikshit RP, Webster DA (1990) Study of Vitreoscilla globin (vgb) gene expression and promoter activity in E. coli through transcriptional fusion. Nucleic Acids Res 18:4149–4155. doi:10.1093/nar/18.14.4149

    Article  PubMed  CAS  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770. doi:10.1046/j.1365-313X.2003.01846.x

    Article  PubMed  CAS  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210. doi:10.1093/nar/30.1.207

    Article  PubMed  CAS  Google Scholar 

  • Fox J (2005) The R commander: a basic-statistics graphical user interface to R. J Stat Softw 14:1–42

    Google Scholar 

  • Frey AD, Kallio PT (2003) Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiol Rev 27:525–545. doi:10.1016/S0168-6445(03)00056-1

    Article  PubMed  CAS  Google Scholar 

  • Frey AD, Farrés J, Bollinger CJT, Kallio PT (2002) Bacterial hemoglobins and flavohemoglobins for alleviation of nitrosative stress in Escherichia coli. Appl Environ Microbiol 68:4835–4840. doi:10.1128/AEM.68.10.4835-4840.2002

    Article  PubMed  CAS  Google Scholar 

  • Frey AD, Oberle BT, Farrés J, Kallio PT (2004) Expression of Vitreoscilla haemoglobin in tobacco cell cultures relieves nitrosative stress in vivo and protects from NO in vitro. Plant Biotech J 2:221–231. doi:10.1111/j.1467-7652.2004.00066.x

    Article  CAS  Google Scholar 

  • Frey AD, Shepherd M, Jokipii-Lukkari S, Häggman H, Kallio PT (2011) The single-domain globin of Vitreoscilla: augmentation of aerobic metabolism for biotechnological applications. Adv Microb Physiol 58:81–139. doi:10.1016/B978-0-12-381043-4.00003-9

    Article  PubMed  CAS  Google Scholar 

  • Grün S, Lindermayr C, Sell S, Durner J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516. doi:10.1093/jxb/erj053

    Article  PubMed  Google Scholar 

  • Gupta KJ, Hebelstrup KH, Mur LAJ, Igamberdiev AU (2011) Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide. FEBS Lett 585:3843–3849. doi:10.1016/j.febslet.2011.10.036

    Article  PubMed  CAS  Google Scholar 

  • Häggman H, Frey AD, Ryynänen L, Aronen T, Julkunen-Tiitto R, Tiimonen H, Pihakaski-Maunsbach K, Jokipii S, Chen XW, Kallio PT (2003) Expression of Vitreoscilla haemoglobin in hybrid aspen (Populus tremula × tremuloides). Plant Biotech J 1:287–300. doi:10.1046/j.1467-7652.2003.00027.x

    Article  Google Scholar 

  • Holmberg N, Lilius G, Bailey JE, Bülow L (1997) Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production. Nat Biotechnol 15:244–247. doi:10.1038/nbt0397-244

    Article  PubMed  CAS  Google Scholar 

  • Hoy JA, Hargrove MS (2008) The structure and function of plant hemoglobins. Plant Physiol Biochem 46:371–379. doi:10.1016/j.plaphy.2007.12.016

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Bykova NV, Shah JK, Hill RD (2010) Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. Physiol Plantarum 138:393–404. doi:10.1111/j.1399-3054.2009.01314.x

    Article  CAS  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  • Jokipii S, Häggman H, Brader G, Kallio PT, Niemi K (2008) Endogenous PttHb1 and PttTrHb, and heterologous Vitreoscilla vhb haemoglobin gene expression in hybrid aspen roots with ectomycorrhizal interaction. J Exp Bot 59:2449–2459. doi:10.1093/jxb/ern107

    Article  PubMed  CAS  Google Scholar 

  • Jokipii-Lukkari S, Frey AD, Kallio PT, Häggman H (2009) Intrinsic non-symbiotic and truncated haemoglobins and heterologous Vitreoscilla haemoglobin expression in plants. J Exp Bot 60:409–422. doi:10.1093/jxb/ern320

    Article  PubMed  CAS  Google Scholar 

  • Jones C, Hopper R, Coleman J, Krischik V (1993) Control of systemically induced herbivore resistance by plant vascular architecture. Oecologia 93:452–456. doi:10.1007/BF00317892

    Article  Google Scholar 

  • Julkunen-Tiitto R, Sorsa S (2001) Testing the effects of drying methods on willow flavonoids, tannins, and salicylates. J Chem Ecol 27:779–789

    Article  PubMed  CAS  Google Scholar 

  • Kallio PT, Kim DJ, Tsai PS, Bailey JE (1994) Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions. Eur J Biochem 219:201–208. doi:10.1021/bp950065j

    Article  PubMed  CAS  Google Scholar 

  • Kaur R, Pathania R, Sharma V, Mande SC, Dikshit KL (2002) Chimeric Vitreoscilla hemoglobin (VHb) carrying a flavoreductase domain relieves nitrosative stress in Escherichia coli: new insight into the functional role of VHb. Appl Environ Microbiol 68:152–160. doi:10.1128/AEM.68.1.152-160.2002

    Article  PubMed  CAS  Google Scholar 

  • Kosmachevskaya OV, Topunov AF (2009) Hemoglobins: diversity of structures and functions. Appl Biochem Microbiol 45:563–587. doi:10.1134/S0003683809060015

    Article  CAS  Google Scholar 

  • Kvist M, Ryabova ES, Nordlander E, Bülow L (2007) An investigation of the peroxidase activity of Vitreoscilla hemoglobin. J Biol Inorg Chem 12:324–334. doi:10.1007/s00775-006-0190-x

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Kim H, An C (2004) Cloning and expression analysis of 2-on-2 hemoglobin from soybean. J Plant Biol 47:92–98. doi:10.1007/BF03030637

    Article  CAS  Google Scholar 

  • Li X, Peng R, Fan H, Xiong A, Yao Q, Cheng Z, Li Y (2005) Vitreoscilla hemoglobin overexpression increases submergence tolerance in cabbage. Plant Cell Rep 23:710–715. doi:10.1007/s00299-004-0872-1

    Article  PubMed  CAS  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946–2959. doi:10.1016/j.phytochem.2007.07.016

    Article  PubMed  CAS  Google Scholar 

  • Major IT, Constabel CP (2006) Molecular analysis of poplar defense against herbivory: comparison of wound- and insect elicitor-induced gene expression. New Phytol 172:617–635. doi:10.1111/j.1469-8137.2006.01877.x

    Article  PubMed  CAS  Google Scholar 

  • Major IT, Constabel CP (2007) Shoot-root defense signaling and activation of root defense by leaf damage in poplar. Can J Bot Rev Can Bot 85:1171–1181. doi:10.1139/B07-090

    Article  CAS  Google Scholar 

  • Mao Z, Hu Y, Zhong J, Wang L, Guo J, Lin Z (2003) Improvement of the hydroponic growth and waterlogging tolerance of petunias by the introduction of vhb gene. Acta Bot Sin 45:205–210

    CAS  Google Scholar 

  • Millard P, Grelet G (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30:1083–1095. doi:10.1093/treephys/tpq042

    Article  PubMed  CAS  Google Scholar 

  • Mur LAJ, Sivakumaran A, Mandon J, Cristescu SM, Harren FJM, Hebelstrup KH (2012) Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens. J Exp Bot 63:4375–4387. doi:10.1093/jxb/ers116

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Núñez-Farfán J, Fornoni J, Luis Valverde P (2007) The evolution of resistance and tolerance to herbivores. Annu Rev Ecol Evol Syst 38:541–566. doi:10.1146/annurev.ecolsys.38.091206.095822

    Article  Google Scholar 

  • Osier TL, Lindroth RL (2001) Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance. J Chem Ecol 27:1289–1313. doi:10.1023/A:1010352307301

    Article  PubMed  CAS  Google Scholar 

  • Osier TL, Lindroth RL (2004) Long-term effects of defoliation on quaking aspen in relation to genotype and nutrient availability: plant growth, phytochemistry and insect performance. Oecologia 139:55–65. doi:10.1007/s00442-003-1481-3

    Article  PubMed  Google Scholar 

  • Park K, Kim K, Howard AJ, Stark BC, Webster DA (2002) Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. J Biol Chem 277:33334–33337. doi:10.1074/jbc.M203820200

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski K, Jacobsen KR, Alloisio N, Denison RF, Klein M, Tjepkema JD, Winzer T, Sirrenberg A, Guan C, Berry AM (2007) Truncated hemoglobins in actinorhizal nodules of Datisca glomerata. Plant Biol 9:776–785. doi:10.1055/s-2007-965258

    Article  PubMed  CAS  Google Scholar 

  • Peters DJ, Constabel CP (2002) Molecular analysis of herbivore-induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J 32:701–712. doi:10.1046/j.1365-313X.2002.01458.x

    Article  PubMed  CAS  Google Scholar 

  • Philippe RN, Bohlmann J (2007) Poplar defense against insect herbivores. Can J Bot Rev Can Bot 85:1111–1126. doi:10.1139/B07-109

    Article  CAS  Google Scholar 

  • Philippe RN, Ralph SG, Mansfield SD, Bohlmann J (2010) Transcriptome profiles of hybrid poplar (Populus trichocarpa × deltoides) reveal rapid changes in undamaged, systemic sink leaves after simulated feeding by forest tent caterpillar (Malacosoma disstria). New Phytol 188:787–802. doi:10.1111/j.1469-8137.2010.03392.x

    Article  PubMed  CAS  Google Scholar 

  • Qu Z, Zhong N, Wang H, Chen A, Jian G, Xia G (2006) Ectopic expression of the cotton non-symbiotic hemoglobin gene GhHb1 triggers defense responses and increases disease tolerance in Arabidopsis. Plant Cell Physiol 47:1058–1068. doi:10.1093/pcp/pcj076

    Article  PubMed  CAS  Google Scholar 

  • Ralph SG (2009) Studying Populus defenses against insect herbivores in the post-genomic era. Crit Rev Plant Sci 28:335–345. doi:10.1080/07352680903241139

    Article  CAS  Google Scholar 

  • Ralph S, Oddy C, Cooper D, Yueh H, Jancsik S, Kolosova N, Philippe RN, Aeschliman D, White R, Huber D, Ritland CE, Benoit F, Rigby T, Nantel A, Butterfield YSN, Kirkpatrick R, Chun E, Liu J, Palmquist D, Wynhoven B, Stott J, Yang G, Barber S, Holt RA, Siddiqui A, Jones SJM, Marra MA, Ellis BE, Douglas CJ, Ritland K, Bohlmann J (2006) Genomics of hybrid poplar (Populus trichocarpa × deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar. Mol Ecol 15:1275–1297. doi:10.1111/j.1365-294X.2006.02824.x

    Article  PubMed  Google Scholar 

  • Ramandeep, Hwang KW, Raje M, Kim K, Stark BC, Dikshit KL, Webster DA (2001) Vitreoscilla hemoglobin—intracellular localization and binding to membranes. J Biol Chem 276:24781–24789. doi:10.1074/jbc.M009808200

    Article  PubMed  CAS  Google Scholar 

  • Seregélyes C, Igamberdiev A, Maassen A, Hennig J, Dudits D, Hill R (2004) NO-degradation by alfalfa class 1 hemoglobin (Mhb 1): a possible link to PR-1a gene expression in Mhb1-overproducing tobacco plants. FEBS Lett 571:61–66. doi:10.1016/j.febslet.2004.06.05

    Article  PubMed  Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York

    Google Scholar 

  • Spyrakis F, Bruno S, Bidon-Chanal A, Javier Luque F, Abbruzzetti S, Viappiani C, Dominici P, Mozzarelli A (2011) Oxygen binding to Arabidopsis thaliana AHb2 nonsymbiotic hemoglobin: evidence for a role in oxygen transport. IUBMB Life 63:355–362. doi:10.1002/iub.470

    Article  PubMed  CAS  Google Scholar 

  • Stevens MT, Lindroth RL (2005) Induced resistance in the indeterminate growth of aspen (Populus tremuloides). Oecologia 145:298–306. doi:10.1007/s00442-005-0128-y

    Article  PubMed  Google Scholar 

  • Su X, Chu Y, Li H, Hou Y, Zhang B, Huang Q, Hu Z, Huang R, Tian Y (2011) Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana ‘Guariento’). PLoS One 6:e24614. doi:10.1371/journal.pone.0024614

    Article  PubMed  CAS  Google Scholar 

  • Sutela S, Niemi K, Edesi J, Laakso T, Saranpää P, Vuosku J, Mäkela R, Tiimonen H, Chiang VL, Koskimäki J, Suorsa M, Julkunen-Tiitto R, Häggman H (2009) Phenolic compounds in ectomycorrhizal interaction of lignin modified silver birch. BMC Plant Biol 9:124. doi:10.1186/1471-2229-9-124

    Article  PubMed  Google Scholar 

  • Tiso M, Tejero J, Kenney C, Frizzell S, Gladwin MT (2012) Nitrite reductase activity of nonsymbiotic hemoglobins from Arabidopsis thaliana. Biochemistry 51:5285–5292. doi:10.1021/bi300570v

    Article  PubMed  CAS  Google Scholar 

  • Tsai PS, Nägeli M, Bailey JE (1996) Intracellular expression of Vitreoscilla hemoglobin modifies microaerobic Escherichia coli metabolism through elevated concentration and specific activity of cytochrome o. Biotechnol Bioeng 49:151–160. doi:10.1002/(SICI)1097-0290(19960120)49:2<151:AID-BIT4>3.0.CO;2-P

    Article  PubMed  CAS  Google Scholar 

  • Vázquez-Limón C, Hoogewijs D, Vinogradov SN, Arredondo-Peter R (2012) The evolution of land plant hemoglobins. Plant Sci 191:71–81. doi:10.1016/j.plantsci.2012.04.013

    Article  PubMed  Google Scholar 

  • Vieweg M, Hohnjec N, Küster H (2005) Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of Medicago truncatula. Planta 220:757–766. doi:10.1007/s00425-004-1397-0

    Article  PubMed  CAS  Google Scholar 

  • Vigeolas H, Hühn D, Geigenberger P (2011) Nonsymbiotic hemoglobin-2 leads to an elevated energy state and to a combined increase in polyunsaturated fatty acids and total oil content when overexpressed in developing seeds of transgenic Arabidopsis plants. Plant Physiol 155:1435–1444. doi:10.1104/pp.110.166462

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov SN, Moens L (2008) Diversity of globin function: enzymatic, transport, storage, and sensing. J Biol Chem 283:8773–8777. doi:10.1074/jbc.R700029200

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi S, Matsubara H, Webster DA (1986) Primary sequence of a dimeric bacterial hemoglobin from Vitreoscilla. Nature 322:481–483

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Guo S (2010) Insect-resistance and high-yield transgenic tobacco obtained by molecular breeding technology. Afr J Biotechnol 9:6626–6631. doi:10.5897/AJB09.1605

    CAS  Google Scholar 

  • Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2009) Functional expression of Vitreoscilla hemoglobin (VHb) in Arabidopsis relieves submergence, nitrosative, photo-oxidative stress and enhances antioxidants metabolism. Plant Sci 176:66–77. doi:10.1016/j.plantsci.2008.09.011

    Article  CAS  Google Scholar 

  • Wildhagen H, Duerr J, Ehlting B, Rennenberg H (2010) Seasonal nitrogen cycling in the bark of field-grown Grey poplar is correlated with meteorological factors and gene expression of bark storage proteins. Tree Physiol 30:1096–1110. doi:10.1093/treephys/tpq018

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Baldwin IT (2009) Herbivory-induced signalling in plants: perception and action. Plant Cell Environ 32:1161–1174. doi:10.1111/j.1365-3040.2009.01943.x

    Article  PubMed  CAS  Google Scholar 

  • Zelasco S, Reggi S, Calligari P, Balestrazzi A, Bongiorni C, Quattrini E, Delia G, Bisoffi S, Fogher C, Confalonieri M (2006) Expression of the Vitreoscilla hemoglobin (VHb)-encoding gene in transgenic white poplar: plant growth and biomass production, biochemical characterization and cell survival under submergence, oxidative and nitrosative stress conditions. Mol Breed 17:201–216. doi:10.1007/s11032-005-5295-3

    Article  CAS  Google Scholar 

  • Zhang L, Li Y, Wang Z, Xia Y, Chen W, Tang K (2007) Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol Adv 25:123–136. doi:10.1016/j.biotechadv.2006.11.001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to show their gratitude to the personnel at the Botanical Gardens of the University of Oulu and to Susanna Häggman, Outi Nousiainen, Sinikka Sorsa, Marko Suokas and Taina Uusitalo for their excellent assistance. Mikael Brosché and Mirva Piippo are thanked for their help in relation to microarray analysis, Jussi Petrelius for his expertise with lepidopteran larvae, and Trevor Fenning and Säde Nenonen for their contribution to the manuscript. This work was funded by Academy of Finland (project numbers 105214 and 123826 to HH), Biological Interactions Graduate School (to SJ-L and SS) and Jenny and Antti Wihuri Foundation (to SS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvi Sutela.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutela, S., Ylioja, T., Jokipii-Lukkari, S. et al. The responses of Vitreoscilla hemoglobin-expressing hybrid aspen (Populus tremula × tremuloides) exposed to 24-h herbivory: expression of hemoglobin and stress-related genes in exposed and nonorthostichous leaves. J Plant Res 126, 795–809 (2013). https://doi.org/10.1007/s10265-013-0569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-013-0569-z

Keywords

Navigation