Skip to main content
Log in

Chloroplasts continuously monitor photoreceptor signals during accumulation movement

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Under low light conditions, chloroplasts gather at a cell surface to maximize light absorption for efficient photosynthesis, which is called the accumulation response. Phototropin1 (phot1) and phototropin2 (phot2) were identified as blue light photoreceptors in the accumulation response that occurs in Arabidopsis thaliana and Adiantum capillus-veneris with neochrome1 (neo1) as a red light photoreceptor in A. capillus-veneris. However, the signal molecule that is emitted from the photoreceptors and transmitted to the chloroplasts is not known. To investigate this topic, the accumulation response was induced by partial cell irradiation with a microbeam of red, blue and far-red light in A. capillus-veneris gametophyte cells. Chloroplasts moved towards the irradiated region and were able to sense the signal as long as its signal flowed. The signal from neo1 had a longer life than the signal that came from phototropins. When two microbeams with the same wavelength and the same fluence rate were placed 20 μm apart from each other and were applied to a dark-adapted cell, chloroplasts at an equidistant position always moved towards the center (midpoint) of the two microbeams, but not towards either one. This result indicates that chloroplasts are detecting the concentration of the signal but not the direction of signal flow. Chloroplasts repeatedly move and stop at roughly 10 s intervals during the accumulation response, suggesting that they monitor the intermittent signal waves from photoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akitaya T, Ohsaka S, Ueda T, Kobatake Y (1985) Oscillations in intracellular ATP, cAMP and cGMP concentration in relation to rhythmical sporulation under continuous light in the myxomycete Physarum polycephalum. J General Microbiol 131:195–200

    CAS  Google Scholar 

  • Alexandre J, Lassalles JP, Kado RT (1990) Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-trisphosphate. Nature 343:567–570

    Article  CAS  Google Scholar 

  • Allen GJ, Muir SR, Sanders D (1995) Relase of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science 268:735–737

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, Trewavas T (1994) A decade of plant signals. BioEssays 16:677–682

    Article  Google Scholar 

  • Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged inositol trisphoshate initiates stomatal closure. Nature 346:769–771

    Article  PubMed  CAS  Google Scholar 

  • Harada A, Sakai T, Okada K (2003) Phot1 and phot2 mediate blue light-induce transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc Natl Acad Sci USA 100:8583–8588

    Article  PubMed  CAS  Google Scholar 

  • Kadota A, Wada M (1992) Photoorientation of chloroplasts in protonemal cells of the fern Adiantum as analyzed by use of a video-tracking system. Bot Mag Tokyo 105:265–279

    Article  Google Scholar 

  • Kadota A, Yamada N, Suetsugu N, Hirose M, Saito C, Shoda K, Ichikawa S, Kagawa T, Nakano A, Wada M (2009) Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc Natl Acad Sci USA 106:13106–13111

    Article  PubMed  CAS  Google Scholar 

  • Kagawa T, Wada M (1994) Brief irradiation with red or blue light induces orientational movement of chloroplasts in dark-adapted prothallial cells of the fern Adiantum. J Plant Res 107:389–398

    Article  Google Scholar 

  • Kagawa T, Kadota A, Wada M (1994) Phytochrome-mediated photoorientation of chloroplasts in protonemal cells of the fern Adiantum can be induced by brief irradiation with red light. Plant Cell Physiol 35:371–377

    CAS  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homologue controlling the chloroplast high-light avoidance response. Science 291:2138–2141

    Article  PubMed  CAS  Google Scholar 

  • Kagawa T, Kasahara M, Abe T, Yoshida S, Wada M (2004) Function analysis of phototropin2 using mutants deficient in blue light-induced chloroplast avoidance movement. Plant Cell Physiol 45:416–426

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Swartz TE, Olney MA, Onodera A, Mochizuki N, Fukuzawa H, Asamizu E, Tabata S, Kanegae H, Takano M, Christie JM, Nagatani A, Briggs WR (2002) Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii. Plant Physiol 129:762–773

    Article  PubMed  CAS  Google Scholar 

  • Kawai H, Kanegae T, Christensen S, Kiyosue T, Sato Y, Imaizumi T, Kadota A, Wada M (2003) Responses of ferns to red light are mediated by an unconventional photoreceptor. Nature 421:287–290

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1984) Turnover of inositol phospholipids and signal transduction. Science 225:1365–1370

    Article  PubMed  CAS  Google Scholar 

  • Nozue K, Kanegae T, Imaizumi T, Fukuda S, Okamoto H, Yeh KC, Lagarias JC, Wada M (1998) A phytochorme from the fern Adiantum with features of the putative photoreceptor NPH1. Proc Natl Acad Sci USA 95:15826–15830

    Article  PubMed  CAS  Google Scholar 

  • Rato C, Monteiro D, Hepler PK, Malhó R (2004) Calmodulin activity and cAMP signaling modulate growth and apical secretion in pollen tubes. Plant J 38:887–897

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735

    Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue-light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98:6969–6974

    Article  PubMed  CAS  Google Scholar 

  • Stoelzle S, Kagawa T, Wada M, Hedrich R, Dietrich P (2003) Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proc Natl Acad Sci USA 100:1456–1461

    Article  PubMed  CAS  Google Scholar 

  • Tlalka M, Fricker M (1999) The role of calcium in blue-light-dependent chloroplast movement in Lemna trisulca L. Plant J 20:461–473

    Article  PubMed  CAS  Google Scholar 

  • Tlalka M, Gabrys H (1993) Influence of calcium on blue-light dependent chloroplast movement in Lemna trisulca L. Planta 189:491–498

    Article  CAS  Google Scholar 

  • Trewavas AJ, Rodrigues C, Rato C, Malho R (2002) Cyclic nucleotides: the current dilemma. Curr Opin Plant Biol 5:425–429

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi H, Wada M (2010) Speed of signal transfer in the chloroplast accumulation response. J Plant Res 123:381–390

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi H, Wada M (2011) Chloroplast can move in any direction to avoid strong light. J Plant Res 124:201–210

    Article  PubMed  Google Scholar 

  • Tsuboi H, Wada M (2012a) Chloroplasts move towards the nearest anticlinal walls under dark condition. J Plant Res 125:301–310

    Article  PubMed  Google Scholar 

  • Tsuboi H, Wada M (2012b) Distribution pattern changes of actin filaments during chloroplast movement in Adiantum capillus-veneris. J Plant Res 125:417–428

    Article  PubMed  Google Scholar 

  • Tsuboi H, Suetsugu N, Wada M (2006) Negative phototropic response of rhizoid cells in the fern Adiantum capillus-veneris. J Plant Res 119:505–512

    Article  PubMed  Google Scholar 

  • Tsuboi H, Suetsugu N, Kawai-Toyooka H, Wada M (2007) Phototropins and neochrome1 mediate nuclear movement in the fern Adiantum capillus-veneris. Plant Cell Physiol 48:892–896

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi H, Yamashita H, Wada M (2009) Chloroplasts do not have a polarity for light-induced accumulation movement. J Plant Res 122:131–140

    Article  PubMed  Google Scholar 

  • Tucker EB, Lee M, Alli S, Sookhdeo V, Wada M, Imaizumi T, Kasahara M, Hepler PK (2005) UV-A induces two calcium waves in Physcomitrella patens. Plant Cell Physiol 46:1226–1236

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Mori Y, Nakagaki T, Kobatake Y (1988) Changes in cAMP and cGMP concentration, birefringent fibrils and contractile activity accompanying UV and blue light photoavoidance in plasmodia of an albino strain of Physarum polycephalum. Photochem Photobiol 47:271–275

    Article  CAS  Google Scholar 

  • Volotovski ID, Sokolovsky SG, Molchan OV, Knight MR (1998) Second messengers mediate increases in cytosolic calcium in tobacco protoplasts. Plant Physiol 117:1023–1030

    Article  PubMed  CAS  Google Scholar 

  • Wada M (2007) Fern as a model system to study photomorphogenesis. J Plant Res 120:3–16

    Article  PubMed  CAS  Google Scholar 

  • Yamashita H, Sato Y, Kanegae T, Kagawa T, Wada M, Kadota A (2011) Chloroplast actin filaments organize meshwork on the photorelocated chloroplasts in the moss Physcomitrella patens. Planta 233:357–368

    Article  PubMed  CAS  Google Scholar 

  • Yatsuhashi H, Kadota A, Wada M (1985) Blue- and red-light action in photoorientation of chloroplasts in Adiantum protonemata. Planta 165:43–50

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hironao Kataoka for his valuable comments. This work was partially supported by the Japanese Ministry of Education, Sports, Science and Technology (MEXT 13139203 and 17084006 to M.W.) and the Japan Society for the Promotion of Science (JSPS 13304061, 16107002 and 20227001 to M.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamitsu Wada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 3405 kb)

Supplementary material 2 (MOV 4041 kb)

Supplementary material 3 (EPS 6608 kb)

Movie S1. A time-lapse video of the chloroplast movement that is shown in Fig. 4. Images were acquired at 15-sec intervals.

Movie S2. A time-lapse video of the chloroplast movement shown in Fig. 5. Images were acquired at 15-sec intervals.

Figure S3. Move and stop cycles during the chloroplast accumulation response induced by irradiation with a B microbeam (8 μm diameter, 10 W m−2) continuously in a dark-adapted gametophyte cell (a and b) and in a dark-adapted A. thaliana mesophyll cell (c and d) at 3-sec intervals and induced by irradiation with a R microbeam (8 μm diameter, 10 W m−2) continuously in a dark-adapted gametophyte cell (e and f) at 5-sec intervals. Other details are the same as in Fig. 6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuboi, H., Wada, M. Chloroplasts continuously monitor photoreceptor signals during accumulation movement. J Plant Res 126, 557–566 (2013). https://doi.org/10.1007/s10265-012-0542-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-012-0542-2

Keywords

Navigation