Skip to main content
Log in

On discreteness of the Hopf equation

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

The principle aim of this essay is to illustrate how different phenomena is captured by different discretizations of the Hopf equation and general hyperbolic conservation laws. This includes dispersive schemes, shock capturing schemes as well as schemes for computing multi-valued solutions of the underlying equation. We introduce some model equations which describe the behavior of the discrete equation more accurate than the original equation. These model equations can either be conveniently discretized for producing novel numerical schemes or further analyzed to enrich the theory of nonlinear partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, H., Liu, H. Formulation and analysis of alternating evolution (AE) schemes for hyperbolic conservation laws. (preprint)

  2. Bianco, F., Puppo, G., Russo, G. High-order central schemes for hyperbolic systems of conservation laws. SIAM J. Sci. Comput., 21(1): 294–322, (1999) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bouchut, F. James, F. Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Comm. Partial Differential Equations, 24(11–12): 2173–2189 (1999)

    MATH  MathSciNet  Google Scholar 

  4. Camassa, R., Holm, D.D. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71: 1661–1664 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, G.Q. Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics. III. Acta Math. Sci. (English Ed.), 6(1): 75–120 (1986)

    MATH  MathSciNet  Google Scholar 

  6. Chen, G.Q., Liu, H.L. Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal., 34(4): 925–938 (2003)(electronic)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, G.Q., Liu, H.L. Concentration and cavitation in solutions of the euler equations for nonisentropic fluids as the pressure vanishes. Phys. D., 189(1–2): 141–165 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheng, L.T., Liu, H.L., Osher, S. Computational high-frequency wave propagation using the level set method, with applications to the semi-classical limit of Schrödinger equations. Comm. Math. Sci., 1(3): 593–621 2003

    MATH  MathSciNet  Google Scholar 

  9. Cheng, L.T., Osher, S., Kang, M., Shim, H., Tsai, Y.H. Reflection in a level set framework for geometric optics. Comput. Model Eng. Sci., 5(4): 347–360 (2004)

    MATH  MathSciNet  Google Scholar 

  10. Cockburn, B., Shu, C.W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput., 16(3): 173–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Coclite, G.M., Karlsen, K.H. On the well-posedness of the degasperisprocesi equation. J. Funct. Anal., 233: 60–91 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Colella, P., Woodward, P.R. The piecewise parabolic method (ppm) for gas-dynamical simulations. J. Comput. Phys., 54(1): 174–201 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Courant, R., Hilbert, D. Methods of mathematical physics. Vol. II. John Wiley & Sons Inc., New York, 1989. Partial differential equations, Reprint of the 1962 original, A Wiley-Interscience Publication.

    Google Scholar 

  14. Courant, R., Isaacson, E., Rees, M. On the solution of nonlinear hyperbolic differential equations by finite differences. Comm. Pure. Appl. Math., 5:243–255 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  15. Crandall, M.G., Lions, P.L. Two approximations of solutions of Hamilton-Jacobi equations. Math. Comp., 43(167): 1–19 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Degasperis, A., Procesi, M. Asymptotic integrability. In: Symmetry and perturbation theory. In Rome, pages 23–37, World Scientific, River Edge, NJ, 1999

    Google Scholar 

  17. Ding, X.Q., Chen, G.Q., Luo, P.Z. Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics. I, II. Acta Math. Sci., (English Ed.), 5(4): 415–472 (1985)

    MATH  MathSciNet  Google Scholar 

  18. Ding, X.Q., Chen, G.Q., Luo, P.Z. Convergence of the Lax-Friedrichs scheme for the system of equations of isentropic gas dynamics. I. Acta Math. Sci., 7(4): 467–480 (1987) (in Chinese)

    MathSciNet  Google Scholar 

  19. E, W., Rykov, Y.G., Sinai, Y.G. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys., 177(2): 349–380 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Engquist, B., Osher, S. Stable and entropy satisfying approximations for transonic flow calculations. Math. Comp., 34(149): 45–75 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  21. Engquist, B., Runborg, O. Computational high frequency wave propagation. Acta Numer., 12: 181–266 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Evans, L.C. A geometric interpretation of the heat equation with multivalued initial data. SIAM J. Math. Anal., 27(4): 932–958 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Francesco, M.D., Fellner, K., Liu, H. A non-local conservation law with nonlinear ‘radiation’ inhomogeneity. To appear in J. Hyperbolic Differ. Equ., (2008)

  24. Fuchssteiner, B., Fokas, A. Symplectic structures, their backlund transformations and hereditary symmetries. Physica D, 4(1): 47–66 (1881/82)

    Article  MathSciNet  Google Scholar 

  25. Giga, Y., Sato, M.H. A level set approach to semicontinuous viscosity solutions for Cauchy problems. Comm. Partial Differential Equations, 26(5–6): 813–839 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Godunov, S.K. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.), 47(89): 271–306 (1959)

    MathSciNet  Google Scholar 

  27. Goodman, J., Lax, P.D. On dispersive difference schemes. I. Comm. Pure Appl. Math., 41(5): 591–613 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gosse, L., James, F. Convergence results for an inhomogeneous system arising in various high frequency approximations. Numer. Math., 90(4): 721–753 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gottlieb, S., Shu, C.W., Tadmor, E. Strong stability-preserving high-order time discretization methods. SIAM Rev., 43(1): 89–112 (2001) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  30. Harten, A. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 49(3): 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  31. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R. Uniformly high-order accurate essentially nonoscillatory schemes. III. J. Comput. Phys., 71(2): 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  32. Harten, A., Lax, P.D., van Leer, B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev., 25(1): 35–61 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hou, T.Y., Lax, P.D. Dispersive approximations in fluid dynamics. Comm. Pure Appl. Math., 44(1): 1–40 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  34. Jiang, G.S., Tadmor, E. Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput., 19(6): 1892–1917 (1998) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  35. Jin, S., Liu, H., Osher, S., Tsai, R. Computing multi-valued physical observables for the high frequency limit of symmetric hyperbolic systems. J. Comput. Phys., 210(2): 497–518 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Jin, S., Liu, H., Osher, S., Tsai, R. Computing multi-valued physical observables for the semiclassical limit of the Schrödinger equation. J. Comput. Phys., 205(1): 222–241 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Jin, S., Osher, S. A level set method for the computation of multivalued solutions to quasi-linear hyperbolic PDE’s and Hamilton-Jacobi equations. Comm. Math. Sci., 1(3): 575–591 (2003)

    MATH  MathSciNet  Google Scholar 

  38. Kac, M., yon Moerbeke, P. On an explicitly soluble system of nonlinear differential equations related to certain toda lattices. Adv. in Math., 16: 160–169 (1975)

    Article  MATH  Google Scholar 

  39. A. Kurganov, S. Noelle, and G. Petrova. Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput., 23(3): 707–740 (electronic), 2001.

    Article  MATH  MathSciNet  Google Scholar 

  40. Kurganov, A., Petrova, G. A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems. Numer. Math., 88(4): 683–729 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kurganov, A., Tadmor, E. New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations. J. Comput. Phys., 160(2): 720–742 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  42. Lax, P., Levermore, C. The zero dispersion limit of the korteweg-de vries equation. Comm. Pure Appl. Math., 36(I, II, III): 253–290, 571-593, 809-829 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  43. Lax, P.D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math., 7: 159–193 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  44. Lax, P.D. On dispersive difference schemes. Physica D, 18: 250–254 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  45. Lax, P.D. Oscillatory solutions of partial differential and difference equations. In Mathematics Applied to Science (New Orleans, La., 1986), pages 155–170. Academic Press, Boston, MA, 1988

    Google Scholar 

  46. Lax, P.D., Wendroff, B. Difference schemes for hyperbolic equations with high order of accuracy. Comm. Pure Appl. Math., 17: 381–398 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  47. Levermore, C.D., Liu, J.G. Large oscillations arising in a dispersive numerical scheme. Phys. D, 99(2–3): 191–216 (1996)

    Article  MathSciNet  Google Scholar 

  48. Levy, D., Puppo, G., Russo, G. Central WENO schemes for hyperbolic systems of conservation laws. M2AN Math. Model. Numer. Anal., 33(3): 547–571 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  49. Liu, H. Wave breaking in a class of nonlocal dispersive wave equations. J. Nonlinear Math. Phys., 13(3): 441–466 (2006)

    Article  MathSciNet  Google Scholar 

  50. Liu, H. An alternating evolution approximation to systems of hyperbolic conservation laws. To appear in J. Hyperbolic Differ. Equ., (2008)

  51. Liu, H., Cheng, L.T., Osher, S. A level set framework for tracking multi-valued solutions to nonlinear first-order equations, December 07, 2005 (electronically). J. Sci. Comp., 29(3): 353–373 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  52. Liu, H., Osher, S., Tsai, R. Multi-valued solution and level set methods in computing high frequency wave propagation. Comm. in Comput. Phys., 1(5): 765–804 (2006)

    Google Scholar 

  53. Liu, H., Tadmor, E. Critical thresholds in a convolution model for nonlinear conservation laws. SIAM J. Math. Anal., 33(4): 930–945 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  54. Liu, H., Wang, Z. Computing multi-valued velocity and electric fields for 1D Euler-Poisson equations. Appl. Numer. Math., 57(5–7): 821–836 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  55. Liu, H., Wang, Z. A field-space-based level set method for computing multi-valued solutions to 1D Euler-Poisson equations. J. Comput. Phys., 225(1): 591–614 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  56. Liu, H., Wang, Z. Superposition of multi-valued solutions in high frequency wave dynamics. J. Sci. Comput., publication online 3/11/2008

  57. Liu, X.D., Osher, S., Chan, T. Weighted essentially non-oscillatory schemes. J. Comput. Phys., 115(1): 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  58. Liu, X.D., Tadmor, E. Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer. Math., 79(3): 397–425 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  59. Liu, Y. Central schemes on overlapping cells. J. Comput. Phys., 209(1): 82–104 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  60. Miller, P.D., Ercolani, N.M., Levermore, C.D. Modulation of multiphase waves in the presence of resonance. Phys. D, 92(1–2): 1–27 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  61. Min, C. Local level set method in high dimension and codimension. J. Comput. Phys., 200(1): 368–382 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  62. Moser, J. Three integrable Hamiltonian systems connected with isospectral deformations. In Surveys in applied mathematics (Proc. First Los Alamos Sympos. Math. in Natural Sci., Los Alamos, N.M., 1974), pages 235–258. Academic Press, New York, 1976

    Google Scholar 

  63. Nessyahu, H., Tadmor, E. Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys., 87(2): 408–463 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  64. Osher, S. Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal., 21(2): 217–235 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  65. Osher, S. A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations. SIAM J. Math. Anal., 24(5): 1145–1152 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  66. Osher, S., Cheng, L.T., Kang, M., Shim, H., Tsai, Y.H. Geometric optics in a phase-space-based level set and Eulerian framework. J. Comput. Phys., 179(2): 622–648 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  67. Osher, S., Fedkiw, R. Level set methods and dynamic implicit surfaces. Springer-Verlag, New York, 2002

    Google Scholar 

  68. Osher, S., Sethian, J.A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1): 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  69. Qian, J., Cheng, L.T., Osher. S. A level set-based Eulerian approach for anisotropic wave propagation. Wave Motion, 37(4): 365–379 2003

    Article  MATH  MathSciNet  Google Scholar 

  70. Sheng, W., Zhang, T. The Riemann problem for the transportation equations in gas dynamics. Mem. Amer. Math. Soc., 137(654): viii+77 (1999)

    MathSciNet  Google Scholar 

  71. Shu, C.W., Osher, S. Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys., 77(2): 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  72. Shu, C.W., Osher. S. Efficient implementation of essentially nonoscillatory shock-capturing schemes. II. J. Comput. Phys., 83(1): 32–78 1989

    Article  MATH  MathSciNet  Google Scholar 

  73. Tadmor, E. Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comp., 43(168): 369–381 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  74. Toda, M. Theory of nonlinear lattices. Vol.20 of Solid-State Sciences. Springer-Verlag, New York, Second edition, 1988

    Google Scholar 

  75. Tsai, Y.H.R., Giga, Y., Osher, S. A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations. Math. Comp., 72(241): 159–181 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  76. Turner, C.V., Rosales, R.R. The small dispersion limit for a nonlinear semidiscrete system of equations. Stud. Appl. Math., 99(3): 205–254 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  77. van Leer, B. Upwind differencing for hyperbolic systems of conservation laws. In Numerical methods for engineering, 1 (Paris, 1980), pages 137–149, Dunod, Paris, 1980

    Google Scholar 

  78. van Leer, B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1): 101–136 (1979) J. Comput. Phys., 135(2): 227-248 (1997) With an introduction by Ch. Hirsch, Commemoration of the 30th anniversary of J. Comput. Phys..

    Article  Google Scholar 

  79. Venakides, S. The zero dispersion limit of the Korteweg-de Vries equation for initial potentials with non-trivial reflection coefficient. Comm. Pure Appl. Math., 38(2): 125–155 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  80. Venakides, S., Deift, P., Oba, R. The Toda shock problem. Comm. Pure Appl. Math., 44(8–9): 1171–1242 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  81. Von Neumann, J. Proposal and analysis of a new numerical method in the treatment of hydrodynamical shock problems. In Collected Works VI. Pergamon, New York, 1961

    Google Scholar 

  82. Wang, Z. Spectral volume method for conservation laws on unstructured grids: basic formulation. J. Comp. Phys., 178: 210–251 (2002)

    Article  MATH  Google Scholar 

  83. Yin, Z. Global weak solutions for a new periodic integrable equation with peakon solutions. J. Funct. Anal., 212(1): 182–194 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  84. N. Zabusky, N., Kruskal, M. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 15: 240–243 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-liang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Hl. On discreteness of the Hopf equation. Acta Math. Appl. Sin. Engl. Ser. 24, 423–440 (2008). https://doi.org/10.1007/s10255-008-8021-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-008-8021-1

Keywords

2000 MR Subject Classification

Navigation