Skip to main content
Log in

A Level Set Framework for Capturing Multi-Valued Solutions of Nonlinear First-Order Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce a level set method for the computation of multi-valued solutions of a general class of nonlinear first-order equations in arbitrary space dimensions. The idea is to realize the solution as well as its gradient as the common zero level set of several level set functions in the jet space. A very generic level set equation for the underlying PDEs is thus derived. Specific forms of the level set equation for both first-order transport equations and first-order Hamilton-Jacobi equations are presented. Using a local level set approach, the multi-valued solutions can be realized numerically as the projection of single-valued solutions of a linear equation in the augmented phase space. The level set approach we use automatically handles these solutions as they appear

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benamou J.D., Castella F., Katsaounis T., Perthame B. (2001). High-frequency Helmholtz Equation, Geometrical Optics and Particle Methods, Revist. Math. Iberoam.

  2. Benamou J.-D. (1996). Big ray tracing: multivalued travel time field computation using viscosity solution of the eikonal equation. J. Comp. Phys. 128:463–474

    Article  Google Scholar 

  3. Benamou J.D. (1999). Direct solution of multivalued phase space solutions for Hamilton-Jacobi equations. Comm. Pure Appl. math. 52:1443–1475

    Article  MathSciNet  Google Scholar 

  4. Brenier Y. (1984). Averaged multivalued solutions for scalar conservation laws. SIAM J. Numer. Anal 21:1013–1037

    Article  MathSciNet  Google Scholar 

  5. Brenier Y., Corrias L. (1998). A kinetic formulation for multi-branch entropy solutions of scalar conservation laws. Ann. Inst. Henri Poincare 15:169–190

    Article  MathSciNet  Google Scholar 

  6. Burchard P., Cheng L.-T., Merriman B., Osher S. (2001). Motion of curves in three spatial dimensions using a level set approach. J. Comput. Phys 170:720–741

    Article  MathSciNet  Google Scholar 

  7. Courant R., Hilbert D. (1952–1962). Methods of Mathematical Physics, Vol 2, Interscience Publishers, New York.

  8. Cheng, L.-T., Osher, S., Kang, M., Shim, H., and Tsai, Y.-H. Reflection in a level set framework for geometric optics. Comp. Methods Eng. Phys. to appear.

  9. Cheng L.-T., Liu H.-L., Osher S. (2003). Computational high-frequency wave propagation in Schödinger equations using the Level Set Method, with applications to the semi-classical limit of Schrödinger equations. Comm. Math. Sci 1(3):593–621

    MathSciNet  Google Scholar 

  10. Crandall M., Lions P.L. (1984). Viscosity solutions of Hamilton-Jacobi equations. Trans. AM. Math. Soc 282:487

    Article  MathSciNet  Google Scholar 

  11. Engquist B., Fatemi E., Osher S. (1995). Numerical solution of the high frequency asymptotic expansion for the scalar wave equation. J. Comput. Phys. 120:145–155

    Article  MathSciNet  Google Scholar 

  12. Engquist B., Runborg O. (1996). Multi-phase computations in geometrical optics. J. Comp. Appl. Math. 74:175–1992

    Article  MathSciNet  Google Scholar 

  13. Engquist B., Runborg O., Tornberg T.-K. (2002). High frequency wave propagation by the segment projection method. J. Comput. Phys 178:373–390

    Article  MathSciNet  Google Scholar 

  14. Engquist, B., and Runborg, O. (2003). Computational high frequency wave propagation, Acta Numerica, 2003.

  15. Evans L.-C. (1996). A geometric interpretation of the heat equation with multi-valued initial data. SIAM J. Math. Anal 27:932–958

    Article  MathSciNet  Google Scholar 

  16. Gosse L. (2002). Using K-branch entropy solutions for multivalued geometric optics computations. J. Comp. Phys. 180: 155–182

    Article  MathSciNet  Google Scholar 

  17. Gosse L., Jin S., Li X. (2003). On two moment systems for computing multiphase semiclassical limits of the Schrödinger equation. Math. Models Methods Appl. Sci 13(12):1689–1723

    Article  MathSciNet  Google Scholar 

  18. Gray S., May W. (1994). Kirchhoff migration using eikonal equation travel times. Geophysics 59:810–817

    Article  Google Scholar 

  19. Gasser I., Markowich P.A. (1997). Quantum hydrodynamics, Wigner transform and the classical limit. Asymptotic Anal 14:97–116

    MathSciNet  Google Scholar 

  20. Gerard P., Markowich P.A., Mauser N.J., Poupaud F. (1997). Homogenization limits and Wigner transforms. Comm. Pure Appl. Math 50:323–380

    Article  MathSciNet  Google Scholar 

  21. Jin S., Li X. (2003). Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs Wigner. Physics D. 182(1–2):46–85

    Article  MathSciNet  Google Scholar 

  22. Jin, S., and Osher, S. A level set method for the computation of multivalued solutions to quasi-linear hyperbolic PDE’s and Hamilton-Jacobi equations. submitted to Comm. Math. Sci.

  23. Liu, H. Geometrical solutions of Hamilton-Jacobi equations,preprint (2004).

  24. Min, C. (2003). Simplicial isosurfacing in arbitrary dimension and codimension. J. Comput. Phys 190:295–310

    Article  MathSciNet  Google Scholar 

  25. Min C. (2004). Local level set method in high dimension and codimension. J. Comput. Phys 200:368–382

    Article  MathSciNet  Google Scholar 

  26. Osher S. (1993). A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations. SIAM J. Math. Anal 24:1145–1152

    Article  MathSciNet  Google Scholar 

  27. Osher S., Cheng L.-T., Kang M., Shim H., Tsai Y.-H. (2002). Geometric optics in a phase space based level set and eulerian framework. J. Comput. Phys 179:622–648

    Article  MathSciNet  Google Scholar 

  28. Osher S., Fedkiw R. Level Set Method and Dynamic Implicit Surfaces. Springer-Verlag, NY

  29. Osher S., Sethian J. (1988). Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys 79:12–49

    Article  MathSciNet  Google Scholar 

  30. Qian J., Cheng L.-T., Osher S. (2003). A level set based Eulerian approach for anisotropic wave propagation. Wave Motion 37:365–379

    Article  MathSciNet  Google Scholar 

  31. Runborg O. (2000). Some new results in multi-phase geometric optics. Math. Model. Num. Anal. 34:1203–1231

    Article  MathSciNet  Google Scholar 

  32. Sparber C., Markowich P.A., Mauser N.J. (2003). Wigner functions versus WKB-methods in multivalued geometrical optics. Asymptot. Anal 33(2):153–187

    MathSciNet  Google Scholar 

  33. Tsai Y.-H. R., Giga Y., Osher S. (2003). A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations. Math. Comp. 72:159–181

    Article  MathSciNet  Google Scholar 

  34. Whitham G.B. (1974). Linear and Nonlinear Waves. Wiley-Interscience [John Wiley & Sons], New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailiang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Cheng, LT. & Osher, S. A Level Set Framework for Capturing Multi-Valued Solutions of Nonlinear First-Order Equations. J Sci Comput 29, 353–373 (2006). https://doi.org/10.1007/s10915-005-9016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9016-1

Keywords

AMS subject classification

Navigation