Skip to main content

Advertisement

Log in

Research trends of targeted therapy for cholangiocarcinoma from 2003 to 2022: a bibliometric and visual analysis

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

A Correction to this article was published on 03 August 2023

This article has been updated

Abstract

In the past 20 years, targeted therapy for cholangiocarcinoma has attracted certain attention. There is a significant upward in papers focusing on this field. In this study, we used bibliometric and visual methods to explore the current status and future directions in cholangiocarcinoma-targeted therapy research. A total of 1057 papers published in English from 2003 to 2022 were extracted from the Web of Science Core Collection SCI-expanded database. Furthermore, Citespace, Vosviewer, and Excel 2016 were utilized to conduct bibliometric and visual analysis. The volume of annual publications has steadily increased over the past two decades. The USA has published the largest number of publications, and the Mayo Clinic acted as the dominant institution. Cancers, Frontiers in Oncology, and Hepatology were the prolific resources in this research field. Moreover, the co-cited reference analysis uncovered the landmark paper in this field. With regard to research hotspots and frontiers, the burst keywords analysis showed that growth factor receptors and pathogenesis might become the hot topics of future research. To sum up, our study displays the current research status and future directions in the targeted therapy for cholangiocarcinoma. More comprehensive and in-depth investigations should focus on critical genetic mutations and their molecular mechanisms to prompt the molecular-targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.

Change history

References

  1. Vithayathil M, Khan SA. Current epidemiology of cholangiocarcinoma in Western countries. J Hepatol. 2022;77(6):1690–8. https://doi.org/10.1016/j.jhep.2022.07.022.

    Article  PubMed  Google Scholar 

  2. Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet (London, England). 2014;383(9935):2168–79. https://doi.org/10.1016/s0140-6736(13)61903-0.

    Article  PubMed  Google Scholar 

  3. Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma—evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018;15(2):95–111. https://doi.org/10.1038/nrclinonc.2017.157.

    Article  CAS  PubMed  Google Scholar 

  4. Esnaola NF, Meyer JE, Karachristos A, et al. Evaluation and management of intrahepatic and extrahepatic cholangiocarcinoma. Cancer. 2016;122(9):1349–69. https://doi.org/10.1002/cncr.29692.

    Article  PubMed  Google Scholar 

  5. Bressler L, Bath N, Manne A, Miller E, Cloyd JM (2023) Management of locally advanced intrahepatic cholangiocarcinoma: a narrative review. Chin Clin Oncol, 12(2):15. https://doi.org/10.21037/cco-22-115.

  6. Zhao LM, Shi AD, Yang Y, et al. Advances in molecular and cell therapy for immunotherapy of cholangiocarcinoma. Front Oncol. 2023;13:1140103. https://doi.org/10.3389/fonc.2023.1140103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rizzo A, Brandi G. First-line chemotherapy in advanced biliary tract cancer ten years after the ABC-02 Trial: "and yet it moves!". Cancer treatment and research communications 2021, 27:100335. https://doi.org/10.1016/j.ctarc.2021.100335.

  8. Ricci AD, Rizzo A, Brandi G. Immunotherapy in biliary tract cancer: worthy of a second look. Cancer Control J Moffitt Cancer Center. 2020;27(3):1073274820948047. https://doi.org/10.1177/1073274820948047.

    Article  Google Scholar 

  9. Santoni M, Rizzo A, Kucharz J, et al. Complete remissions following immunotherapy or immuno-oncology combinations in cancer patients: the MOUSEION-03 meta-analysis. Cancer Immunol Immunother. 2023;72(6):1365–79. https://doi.org/10.1007/s00262-022-03349-4.

    Article  CAS  PubMed  Google Scholar 

  10. Kelley RK, Ueno M, Yoo C et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (London, England) 2023. https://doi.org/10.1016/s0140-6736(23)00727-4.

  11. Cho SM, Esmail A, Raza A, Dacha S, Abdelrahim M. Timeline of FDA-approved targeted therapy for cholangiocarcinoma. Cancers. 2022. https://doi.org/10.3390/cancers14112641.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li N, Zeng A, Wang Q, et al. Regulatory function of DNA methylation mediated lncRNAs in gastric cancer. Cancer Cell Int. 2022;22(1):227. https://doi.org/10.1186/s12935-022-02648-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dabney RS, Khalife M, Shahid K, Phan AT. Molecular pathways and targeted therapy in cholangiocarcinoma. Clin Adv Hematol Oncol. 2019;17(11):630–7.

    PubMed  Google Scholar 

  14. Ricci AD, Rizzo A, Brandi G. The DNA damage repair (DDR) pathway in biliary tract cancer (BTC): A new Pandora’s box? ESMO open. 2020;5(5):e001042. https://doi.org/10.1136/esmoopen-2020-001042.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lavacchi D, Caliman E, Rossi G, et al. Ivosidenib in IDH1-mutated cholangiocarcinoma: clinical evaluation and future directions. Pharmacol Ther. 2022;237:108170. https://doi.org/10.1016/j.pharmthera.2022.108170.

    Article  CAS  PubMed  Google Scholar 

  16. Abou-Alfa GK, Macarulla T, Javle MM, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020;21(6):796–807. https://doi.org/10.1016/s1470-2045(20)30157-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abou-Alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 2020;21(5):671–84. https://doi.org/10.1016/s1470-2045(20)30109-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Liu C, Wu C, Song L. Natural peptides for immunological regulation in cancer therapy: mechanism, facts and perspectives. Biomed Pharmacother. 2023;159:114257. https://doi.org/10.1016/j.biopha.2023.114257.

    Article  CAS  PubMed  Google Scholar 

  19. Kam AE, Masood A, Shroff RT. Current and emerging therapies for advanced biliary tract cancers. Lancet Gastroenterol Hepatol. 2021;6(11):956–69. https://doi.org/10.1016/s2468-1253(21)00171-0.

    Article  PubMed  Google Scholar 

  20. Ninkov A, Frank JR, Maggio LA. Bibliometrics: methods for studying academic publishing. Perspect Med Educ. 2022;11(3):173–6. https://doi.org/10.1007/s40037-021-00695-4.

    Article  PubMed  Google Scholar 

  21. Wu HY, Liu T, Zhong T, et al. Research trends and hotspots of neoadjuvant therapy in pancreatic cancer: a bibliometric analysis based on the Web of Science Core Collection. Clin Exp Med. 2023. https://doi.org/10.1007/s10238-023-01013-4.

    Article  PubMed  Google Scholar 

  22. Yao L, Hui L, Yang Z, Chen X, Xiao A. Freshwater microplastics pollution: detecting and visualizing emerging trends based on Citespace II. Chemosphere. 2020;245:125627. https://doi.org/10.1016/j.chemosphere.2019.125627.

    Article  CAS  PubMed  Google Scholar 

  23. Arruda H, Silva ER, Lessa M, Proença D Jr, Bartholo R. VOSviewer and Bibliometrix. J Med Libr Assoc. 2022;110(3):392–5. https://doi.org/10.5195/jmla.2022.1434.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yuan X, Chang C, Chen X, Li K. Emerging trends and focus of human gastrointestinal microbiome research from 2010–2021: a visualized study. J Transl Med. 2021;19(1):327. https://doi.org/10.1186/s12967-021-03009-8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145(6):1215–29. https://doi.org/10.1053/j.gastro.2013.10.013.

    Article  CAS  PubMed  Google Scholar 

  26. Kipp BR, Voss JS, Kerr SE, et al. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum Pathol. 2012;43(10):1552–8. https://doi.org/10.1016/j.humpath.2011.12.007.

    Article  CAS  PubMed  Google Scholar 

  27. Song L, Zhang J, Ma D, et al. A bibliometric and knowledge-map analysis of macrophage polarization in atherosclerosis from 2001 to 2021. Front Immunol. 2022;13:910444. https://doi.org/10.3389/fimmu.2022.910444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47(9):1003–10. https://doi.org/10.1038/ng.3375.

    Article  CAS  PubMed  Google Scholar 

  29. Jiao Y, Pawlik TM, Anders RA, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet. 2013;45(12):1470–3. https://doi.org/10.1038/ng.2813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ross JS, Wang K, Gay L, et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist. 2014;19(3):235–42. https://doi.org/10.1634/theoncologist.2013-0352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Borger DR, Tanabe KK, Fan KC, et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2012;17(1):72–9. https://doi.org/10.1634/theoncologist.2011-0386.

    Article  CAS  PubMed  Google Scholar 

  32. Churi CR, Shroff R, Wang Y, et al. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS ONE. 2014;9(12):e115383. https://doi.org/10.1371/journal.pone.0115383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Javle M, Lowery M, Shroff RT, et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J Clin Oncol. 2018;36(3):276–82. https://doi.org/10.1200/jco.2017.75.5009.

    Article  CAS  PubMed  Google Scholar 

  34. Javle M, Roychowdhury S, Kelley RK, et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol Hepatol. 2021;6(10):803–15. https://doi.org/10.1016/s2468-1253(21)00196-5.

    Article  PubMed  Google Scholar 

  35. Arai Y, Totoki Y, Hosoda F, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology. 2014;59(4):1427–34. https://doi.org/10.1002/hep.26890.

    Article  CAS  PubMed  Google Scholar 

  36. Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 2017;7(10):1116–35. https://doi.org/10.1158/2159-8290.Cd-17-0368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liang S, Guo H, Ma K, et al. A PLCB1-PI3K-AKT signaling axis activates EMT to promote cholangiocarcinoma progression. Can Res. 2021;81(23):5889–903. https://doi.org/10.1158/0008-5472.Can-21-1538.

    Article  CAS  Google Scholar 

  38. Bekaii-Saab TS, Bridgewater J, Normanno N. Practical considerations in screening for genetic alterations in cholangiocarcinoma. Ann Oncol Off J Eur Soc Med Oncol. 2021;32(9):1111–26. https://doi.org/10.1016/j.annonc.2021.04.012.

    Article  CAS  Google Scholar 

  39. Farha N, Dima D, Ullah F, Kamath S. Precision oncology targets in biliary tract cancer. Cancers. 2023. https://doi.org/10.3390/cancers15072105.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bridgewater JA, Goodman KA, Kalyan A, Mulcahy MF. Biliary tract cancer: epidemiology, radiotherapy, and molecular profiling. Am Soc Clin Oncol Edu Book Am Soc Clin Oncol Annu Meet. 2016;35:e194-203. https://doi.org/10.1200/edbk_160831.

    Article  Google Scholar 

  41. Sun Q, Wang H, Xiao B, Xue D, Wang G. Development and validation of a 6-gene hypoxia-related prognostic signature for cholangiocarcinoma. Front Oncol. 2022;12:954366. https://doi.org/10.3389/fonc.2022.954366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seubwai W, Kraiklang R, Wongkham C, Wongkham S. Hypoxia enhances aggressiveness of cholangiocarcinoma cells. Asian Pacific journal of cancer prevention : APJCP. 2012;13(Suppl):53–8.

    PubMed  Google Scholar 

  43. Sugihara T, Isomoto H, Gores G, Smoot R. YAP and the Hippo pathway in cholangiocarcinoma. J Gastroenterol. 2019;54(6):485–91. https://doi.org/10.1007/s00535-019-01563-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Science & Technology Department of Sichuan Province Funding Project (2022YFSY0027) and Science & Technology Department of Sichuan Province Funding Project (2022NSFSC1348).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by QL; methodology was contributed by PH; formal analysis and investigation were contributed by PH and FW; writing—original draft preparation was contributed by PH and QJ.W; writing—review and editing were contributed by QL and PF.Z; funding acquisition was contributed by QL and PF.Z; supervision was contributed by QL. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Qiu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Supplementary file2 (DOCX 3728 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Wen, F., Wu, Q. et al. Research trends of targeted therapy for cholangiocarcinoma from 2003 to 2022: a bibliometric and visual analysis. Clin Exp Med 23, 3981–3994 (2023). https://doi.org/10.1007/s10238-023-01110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01110-4

Keywords

Navigation