Skip to main content

Advertisement

Log in

PDCD1 and PDCD1LG1 polymorphisms affect the susceptibility to multiple myeloma

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Single-nucleotide polymorphisms (SNPs) of the programmed cell death protein-1 (PDCD1), programmed cell death protein-1 ligand-1 (PDCD1LG1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA4) genes are implicated in the pathogenesis of some cancers. We investigated the role of PDCD1, PDCD1LG1, and CTLA4 SNPs in MM pathogenesis and the susceptibility to and clinical features of multiple myeloma (MM). We obtained genomic DNA from 124 patients with MM and 211 healthy controls and detected PDCD1 (rs36084323, rs41386349, and rs2227982), PDCD1LG1 (rs2297136 and rs4143815), and CTLA4 (rs733618, rs11571316, rs231775, and rs3087243) genotypes using the polymerase chain reaction–restriction fragment length polymorphism method or the TaqMan allelic discrimination real-time PCR method. The patients with MM had a significantly higher frequency of the PDCD1 GCC/GCC haplotype (rs36084323/rs41386349/rs2227982) compared with the healthy controls. PDCD1 rs2227982 CC genotype was associated significantly with a higher frequency of bone lesions. Patients with PDCD1LG1 rs2297136 TT and TC types (high-expression types) showed lower albumin level than those with CC genotype. In addition, the PDCD1LG1 rs4143815 CC and CG types (high-expression types) were associated significantly with higher frequency of patients who were treated with thalidomide and/or bortezomib. However, there was no statistical significance between CTLA4 polymorphisms and clinical variables of patients with MM. There were no significant differences between all the polymorphisms and OS. Our study indicates that the PDCD1 haplotype is associated with a susceptibility to MM. The PDCD1 rs2227982 and PDCD1LG1 rs2297136 affect the clinical features of multiple myeloma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kyle RA, Gertz MA, Witzig TE, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78(1):21–33.

    Article  Google Scholar 

  2. Merchionne F, Perosa F, Dammacco F. New therapies in multiple myeloma. Clin Exp Med. 2007;7(3):83–97.

    Article  CAS  Google Scholar 

  3. Anderson KC, Carrasco RD. Pathogenesis of myeloma. Annu Rev Pathol. 2011;6:249–74.

    Article  CAS  Google Scholar 

  4. Liu H, Pan Y, Meng S, Zhang W, Zhou F. Current treatment options of T cell-associated immunotherapy in multiple myeloma. Clin Exp Med. 2017;17(4):431–9.

    Article  CAS  Google Scholar 

  5. Shen X, Guo Y, Yu J, Qi J, Shi W, Wu X, Ni H, Ju S. miRNA-202 in bone marrow stromal cells affects the growth and adhesion of multiple myeloma cells by regulating B cell-activating factor. Clin Exp Med. 2016;16(3):307–16.

    Article  CAS  Google Scholar 

  6. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5(12):1365–9.

    Article  CAS  Google Scholar 

  7. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.

    Article  CAS  Google Scholar 

  8. Braga WM, da Silva BR, de Carvalho AC, et al. FOXP3 and CTLA4 overexpression in multiple myeloma bone marrow as a sign of accumulation of CD4(+) T regulatory cells. Cancer Immunol Immunother. 2014;63(11):1189–97.

    Article  CAS  Google Scholar 

  9. Tamura H, Ishibashi M, Yamashita T, et al. Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia. 2013;27(2):464–72.

    Article  CAS  Google Scholar 

  10. Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34(23):2698–704.

    Article  CAS  Google Scholar 

  11. Mojtahedi Z, Mohmedi M, Rahimifar S, Erfani N, Hosseini SV, Ghaderi A. Programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with colon cancer. Gene. 2012;508(2):229–32.

    Article  CAS  Google Scholar 

  12. Tang W, Wang Y, Jiang H, et al. Programmed death-1 (PD-1) rs2227981 C>T polymorphism is associated with cancer susceptibility: a meta-analysis. Int J Clin Exp Med. 2015;8(12):22278–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee SY, Jung DK, Choi JE, et al. Functional polymorphisms in PD-L1 gene are associated with the prognosis of patients with early stage non-small cell lung cancer. Gene. 2017;599:28–35.

    Article  CAS  Google Scholar 

  14. Tang W, Qiu H, Jiang H, et al. Lack of association between cytotoxic T-lymphocyte antigen 4 (CTLA-4)-1722T/C (rs733618) polymorphism and cancer risk: from a case-control study to a meta-analysis. PLoS ONE. 2014;9(4):e94039.

    Article  Google Scholar 

  15. Anjos S, Nguyen A, Ounissi-Benkalha H, Tessier MC, Polychronakos C. A common autoimmunity predisposing signal peptide variant of the cytotoxic T-lymphocyte antigen 4 results in inefficient glycosylation of the susceptibility allele. J Biol Chem. 2002;277(48):46478–86.

    Article  CAS  Google Scholar 

  16. Ishizaki Y, Yukaya N, Kusuhara K, et al. PD1 as a common candidate susceptibility gene of subacute sclerosing panencephalitis. Hum Genet. 2010;127(4):411–9.

    Article  CAS  Google Scholar 

  17. Zheng L, Li D, Wang F, et al. Association between hepatitis B viral burden in chronic infection and a functional single nucleotide polymorphism of the PDCD1 gene. J Clin Immunol. 2010;30(6):855–60.

    Article  CAS  Google Scholar 

  18. Perez-Garcia A, Osca G, Bosch-Vizcaya A, et al. Kinetics of the CTLA-4 isoforms expression after T-lymphocyte activation and role of the promoter polymorphisms on CTLA-4 gene transcription. Hum Immunol. 2013;74(9):1219–24.

    Article  CAS  Google Scholar 

  19. Wang W, Li F, Mao Y, et al. A miR-570 binding site polymorphism in the B7-H1 gene is associated with the risk of gastric adenocarcinoma. Hum Genet. 2013;132(6):641–8.

    Article  CAS  Google Scholar 

  20. Lee SY, Jung DK, Choi JE, et al. PD-L1 polymorphism can predict clinical outcomes of non-small cell lung cancer patients treated with first-line paclitaxel–cisplatin chemotherapy. Sci Rep. 2016;6:25952.

    Article  CAS  Google Scholar 

  21. Rosenblatt J, Glotzbecker B, Mills H, et al. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother. 2011;34(5):409–18.

    Article  CAS  Google Scholar 

  22. Benson DM Jr, Bakan CE, Mishra A, et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood. 2010;116(13):2286–94.

    Article  CAS  Google Scholar 

  23. Ishibashi M, Tamura H, Sunakawa M, et al. Myeloma drug resistance induced by binding of myeloma B7-H1 (PD-L1) to PD-1. Cancer Immunol Res. 2016;4(9):779–88.

    Article  CAS  Google Scholar 

  24. Karabon L, Pawlak-Adamska E, Tomkiewicz A, et al. Variations in suppressor molecule ctla-4 gene are related to susceptibility to multiple myeloma in a polish population. Pathol Oncol Res. 2012;18(2):219–26.

    Article  CAS  Google Scholar 

  25. Lee MY, Park CJ, Cho YU, et al. Immune checkpoint (PD-1, PD-L1, PD-L2, and CTLA-4) expression in plasma cell myeloma. Blood. 2017;130:4400.

    Google Scholar 

  26. Yamashita T, Tamura H, Satoh C, et al. Functional B7.2 and B7-H2 molecules on myeloma cells are associated with a growth advantage. Clin Cancer Res. 2009;15(3):770–7.

    Article  CAS  Google Scholar 

  27. Nagahama K, Aoki K, Nonaka K, et al. The deficiency of immunoregulatory receptor PD-1 causes mild osteopetrosis. Bone. 2004;35(5):1059–68.

    Article  CAS  Google Scholar 

  28. Dhodapkar MV, Sexton R, Das R, et al. Prospective analysis of antigen-specific immunity, stem-cell antigens, and immune checkpoints in monoclonal gammopathy. Blood. 2015;126(22):2475–8.

    Article  CAS  Google Scholar 

  29. Wang L, Wang H, Chen H, et al. Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma. Oncotarget. 2015;6(38):41228–36.

    PubMed  PubMed Central  Google Scholar 

  30. Huang SY, Lin HH, Lin CW, et al. Soluble PD-L1: a biomarker to predict progression of autologous transplantation in patients with multiple myeloma. Oncotarget. 2016;7(38):62490–502.

    PubMed  PubMed Central  Google Scholar 

  31. Qin XY, Lu J, Li GX, et al. CTLA-4 polymorphisms are associated with treatment outcomes of patients with multiple myeloma receiving bortezomib-based regimens. Ann Hematol. 2018;97(3):485–95.

    Article  CAS  Google Scholar 

  32. Gorgun G, Samur MK, Cowens KB, et al. Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clin Cancer Res. 2015;21(20):4607–18.

    Article  Google Scholar 

  33. Luptakova K, Rosenblatt J, Glotzbecker B, et al. Lenalidomide enhances anti-myeloma cellular immunity. Cancer Immunol Immunother. 2013;62(1):39–49.

    Article  CAS  Google Scholar 

  34. Driscoll J, Aslam I, Malek E. Eosinophils upregulate PD-L1 and PD-L2 expression to enhance the immunosuppressive microenvironment in multiple myeloma. Blood. 2017;130:4417.

    Google Scholar 

  35. Gibson HM, Mishra A, Chan DV, Hake TS, Porcu P, Wong HK. Impaired proteasome function activates GATA3 in T cells and upregulates CTLA-4: relevance for Sezary syndrome. J Invest Dermatol. 2013;133(1):249–57.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI (Grant Number JP 16K19190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuhiro Kasamatsu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Review Board of Gunma University Hospital (Approval #160007) and with the 1964 Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasamatsu, T., Awata, M., Ishihara, R. et al. PDCD1 and PDCD1LG1 polymorphisms affect the susceptibility to multiple myeloma. Clin Exp Med 20, 51–62 (2020). https://doi.org/10.1007/s10238-019-00585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-019-00585-4

Keywords

Navigation