Skip to main content

Advertisement

Log in

Current treatment options of T cell-associated immunotherapy in multiple myeloma

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is a complex disease and is presently an incurable malignant plasma cell tumor. Although the introduction of proteasome inhibitor and the immunomodulators markedly improved the effect of myeloma therapy, most patients still suffer from relapse even with an initially effective therapy. Accumulating evidence suggests that immunotherapy is a promising option in treating MM. And T cell plays crucial role through inducing sustained immune response in vivo in the immunotherapy of tumors. In this article, we will discuss progress of several T cell-based immunotherapies with insight into how they eradicate myeloma cells and their disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schutt P, Brandhorst D, Stellberg W, Poser M, Ebeling P, Muller S, et al. Immune parameters in multiple myeloma patients: influence of treatment and correlation with opportunistic infections. Leuk Lymphoma. 2006;47(8):1570–82.

    Article  PubMed  Google Scholar 

  2. Porrata LF, Litzow MR, Markovic SN. Immune reconstitution after autologous hematopoietic stem cell transplantation. Mayo Clin Proc. 2001;76(4):407–12.

    Article  CAS  PubMed  Google Scholar 

  3. Southam CM, Brunschwig A, Levin AG, Dizon QS. Effect of leukocytes on transplantability of human cancer. Cancer. 1966;19(11):1743–53.

    Article  CAS  PubMed  Google Scholar 

  4. Lotze MT, Grimm EA, Mazumder A, Strausser JL, Rosenberg SA. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res. 1981;41(11 Pt 1):4420–5.

    CAS  PubMed  Google Scholar 

  5. Michie CA, McLean A, Alcock C, Beverley PC. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature. 1992;360(6401):264–5.

    Article  CAS  PubMed  Google Scholar 

  6. Fujiwara H. Adoptive immunotherapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors. Pharmaceuticals (Basel, Switzerland). 2014;7(12):1049–68.

    Article  CAS  Google Scholar 

  7. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982;155(6):1823–41.

    Article  CAS  PubMed  Google Scholar 

  8. Togawa A, Sawada S, Amano M, Oshimi K, Satoh H, Takaku H. Treatment of multiple myeloma with LAK cells plus interleukin 2 or interleukin 2 alone. [Rinsho ketsueki] Jpn J Clin Hematol. 1989;30(5):650–8.

    CAS  Google Scholar 

  9. Gottlieb DJ, Prentice HG, Mehta AB, Galazka AR, Heslop HE, Hoffbrand AV, et al. Malignant plasma cells are sensitive to LAK cell lysis: pre-clinical and clinical studies of interleukin 2 in the treatment of multiple myeloma. Br J Haematol. 1990;75(4):499–505.

    Article  CAS  PubMed  Google Scholar 

  10. Sun J, Law GP, McKallip RJ. Role of CD44 in lymphokine-activated killer cell-mediated killing of melanoma. Cancer Immunol Immunother CII. 2012;61(3):323–34.

    Article  CAS  PubMed  Google Scholar 

  11. Rosenberg ES, Billingsley JM, Caliendo AM, Boswell SL, Sax PE, Kalams SA, et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science. 1997;278(5342):1447–50.

    Article  CAS  PubMed  Google Scholar 

  12. Boise LH, Minn AJ, Noel PJ, June CH, Accavitti MA, Lindsten T, et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-xL. Immunity. 1995;3:87–98 (J Immunol (Baltimore, Md: 1950). 2010;185(7):3788–99).

    Article  CAS  PubMed  Google Scholar 

  13. Rapoport AP, Stadtmauer EA, Aqui N, Badros A, Cotte J, Chrisley L, et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med. 2005;11(11):1230–7.

    Article  CAS  PubMed  Google Scholar 

  14. Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Fang HB, Cai L, et al. Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood. 2011;117(3):788–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Xu YY, Kalos M, et al. Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/Poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20(5):1355–65.

    Article  CAS  Google Scholar 

  16. Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med. 1991;174(1):139–49.

    Article  CAS  PubMed  Google Scholar 

  17. Liu C, Suksanpaisan L, Chen YW, Russell SJ, Peng KW. Enhancing cytokine-induced killer cell therapy of multiple myeloma. Exp Hematol. 2013;41(6):508–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marten A, Ziske C, Schottker B, Renoth S, Weineck S, Buttgereit P, et al. Interactions between dendritic cells and cytokine-induced killer cells lead to an activation of both populations. J Immunother (Hagerstown, Md: 1997). 2001;24(6):502–10.

    Article  CAS  Google Scholar 

  19. Zhao X, Ji CY, Liu GQ, Ma DX, Ding HF, Xu M, et al. Immunomodulatory effect of DC/CIK combined with chemotherapy in multiple myeloma and the clinical efficacy. Int J Clin Exp Pathol. 2015;8(10):13146–55.

    PubMed  PubMed Central  Google Scholar 

  20. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986;233(4770):1318–21.

    Article  CAS  PubMed  Google Scholar 

  21. Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, et al. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16(24):6122–31.

    Article  CAS  Google Scholar 

  22. Noonan KA, Borrello IM. Marrow infiltrating lymphocytes: their role in adoptive immunotherapy. Cancer J (Sudbury, Mass). 2015;21(6):501–5.

    Article  CAS  Google Scholar 

  23. Noonan KA, Huff CA, Davis J, Lemas MV, Fiorino S, Bitzan J, et al. Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Sci Transl Med. 2015;7(288):288ra78.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wen YJ, Min R, Tricot G, Barlogie B, Yi Q. Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood. 2002;99(9):3280–5.

    Article  CAS  PubMed  Google Scholar 

  25. Baba T, Hanagiri T, Ichiki Y, Kuroda K, Shigematsu Y, Mizukami M, et al. Lack and restoration of sensitivity of lung cancer cells to cellular attack with special reference to expression of human leukocyte antigen class I and/or major histocompatibility complex class I chain related molecules A/B. Cancer Sci. 2007;98(11):1795–802.

    Article  CAS  PubMed  Google Scholar 

  26. Li R, Qian J, Zhang W, Fu W, Du J, Jiang H, et al. Human heat shock protein-specific cytotoxic T lymphocytes display potent antitumour immunity in multiple myeloma. Br J Haematol. 2014;166(5):690–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bae J, Smith R, Daley J, Mimura N, Tai YT, Anderson KC, et al. Myeloma-specific multiple peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma and other plasma cell disorders. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(17):4850–60.

    Article  CAS  Google Scholar 

  28. Hong S, Lee H, Jung K, Lee SM, Lee SJ, Jun HJ, et al. Tumor cells loaded with alpha-galactosylceramide promote therapeutic NKT-dependent anti-tumor immunity in multiple myeloma. Immunol Lett. 2013;156(1–2):132–9.

    Article  CAS  PubMed  Google Scholar 

  29. Atanackovic D, Luetkens T, Kroger N. Coinhibitory molecule PD-1 as a potential target for the immunotherapy of multiple myeloma. Leukemia. 2014;28(5):993–1000.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng C, Huang D, Liu L, Bjorkholm M, Holm G, Yi Q, et al. Cytotoxic T-lymphocyte antigen-4 microsatellite polymorphism is associated with multiple myeloma. Br J Haematol. 2001;112(1):216–8.

    Article  CAS  PubMed  Google Scholar 

  31. Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, et al. In vivo peripheral expansion of naive CD4+ CD25 high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood. 2006;107(10):3940–9.

    Article  CAS  PubMed  Google Scholar 

  32. Zeidler R, Mysliwietz J, Csanady M, Walz A, Ziegler I, Schmitt B, et al. The Fc-region of a new class of intact bispecific antibody mediates activation of accessory cells and NK cells and induces direct phagocytosis of tumour cells. Br J Cancer. 2000;83(2):261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zitron IM, Thakur A, Norkina O, Barger GR, Lum LG, Mittal S. Targeting and killing of glioblastoma with activated T cells armed with bispecific antibodies. BMC Cancer. 2013;13:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alvarez-Vallina L, Hawkins RE. Antigen-specific targeting of CD28-mediated T cell co-stimulation using chimeric single-chain antibody variable fragment-CD28 receptors. Eur J Immunol. 1996;26(10):2304–9.

    Article  CAS  PubMed  Google Scholar 

  35. McCall AM, Shahied L, Amoroso AR, Horak EM, Simmons HH, Nielson U, et al. Increasing the affinity for tumor antigen enhances bispecific antibody cytotoxicity. J Immunol (Baltimore, Md: 1950). 2001;166(10):6112–7.

    Article  CAS  Google Scholar 

  36. Bhutani D, Lum LG. Activated T cells armed with bispecific antibodies kill tumor targets. Curr Opin Hematol. 2015;22(6):476–83.

    Article  CAS  PubMed  Google Scholar 

  37. Einsele H, Schreder M. Treatment of multiple myeloma with the immunostimulatory SLAMF7 antibody elotuzumab. Ther Adv Hematol. 2016;7(5):288–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guidance Development Review C, Working Group for Clinical Studies of Cancer I, Working Group for Effector Cell T, Working Group for CMCN-cS, Working Group for Cancer V, Adjuvants, et al. Guidance on cancer immunotherapy development in early-phase clinical studies. Cancer Sci. 2015;106(12):1761–71.

    Article  Google Scholar 

  39. Paiva B, Azpilikueta A, Puig N, Ocio EM, Sharma R, Oyajobi BO, et al. PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma. Leukemia. 2015;29(10):2110–3.

    Article  CAS  PubMed  Google Scholar 

  40. Naymagon L, Abdul-Hay M. Novel agents in the treatment of multiple myeloma: a review about the future. J Hematol. 2016;9(1):52.

    Google Scholar 

  41. Lonial S, Dimopoulos M, Palumbo A, White D, Grosicki S, Spicka I, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373(7):621–31.

    Article  CAS  PubMed  Google Scholar 

  42. Roccaro AM, Mishima Y, Sacco A, Moschetta M, Tai YT, Shi J, et al. CXCR4 regulates extra-medullary myeloma through epithelial-mesenchymal-transition-like transcriptional activation. Cell Rep. 2015;12(4):622–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoyos V, Borrello I. The immunotherapy era of myeloma: monoclonal antibodies, vaccines, and adoptive T-cell therapies. Blood. 2016;128(13):1679–87.

    Article  CAS  PubMed  Google Scholar 

  44. Karpanen T, Olweus J. T-cell receptor gene therapy–ready to go viral? Mol Oncol. 2015;9(10):2019–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med. 2013;5(197):197ra03.

    Article  Google Scholar 

  47. van Loenen MM, de Boer R, Amir AL, Hagedoorn RS, Volbeda GL, Willemze R, et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci USA. 2010;107(24):10972–7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 1993;90(2):720–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Investig. 2011;121(5):1822–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J (Sudbury, Mass). 2014;20(2):119–22.

    Article  CAS  Google Scholar 

  51. Gschweng E, De Oliveira S, Kohn DB. Hematopoietic stem cells for cancer immunotherapy. Immunol Rev. 2014;257(1):237–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Budde LE, Berger C, Lin Y, Wang J, Lin X, Frayo SE, et al. Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma. PLoS ONE. 2013;8(12):e82742.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C, et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood. 2006;108(12):3890–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Garfall AL, Maus MV, Hwang WT, Lacey SF, Mahnke YD, Melenhorst JJ, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med. 2015;373(11):1040–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(8):2048–60.

    Article  CAS  Google Scholar 

  56. Luptakova K, Avigan D. Immune therapy in multiple myeloma. Clin Adv Hematol Oncol H&O. 2015;13(11):767–75.

    Google Scholar 

  57. Atanackovic D, Radhakrishnan SV, Bhardwaj N, Luetkens T. Chimeric antigen receptor (CAR) therapy for multiple myeloma. Br J Haematol. 2016;172(5):685–98.

    Article  PubMed  Google Scholar 

  58. Yang SY, Xiao XY, Zhang WG, Zhang LJ, Zhang W, Zhou B, et al. Application of serum SELDI proteomic patterns in diagnosis of lung cancer. BMC Cancer. 2005;5:83.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Meng S, Lu C, Zhang W, Shen W, Wei Y, Su D, et al. MMSA-1 expression pattern in multiple myeloma and its clinical significance. Clin Exp Med. 2016;16(4):599–609.

    Article  CAS  PubMed  Google Scholar 

  60. Zhou F, Meng S, Song H, Claret FX. Dickkopf-1 is a key regulator of myeloma bone disease: opportunities and challenges for therapeutic intervention. Blood Rev. 2013;27(6):261–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded in part by National Natural Science Foundation of China (Grant nos. 81270597 and 81172257), the Science and Technology Project of Xi’an Municipality (Grant no. HM1117(4)) and Program for Changjiang Scholars and Innovative Research Team in University (Grant no. PCSIRT1171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuling Zhou.

Ethics declarations

Conflict of interest

None.

Additional information

Hailing Liu and Yunbao Pan contributed equally to this work and should be considered as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Pan, Y., Meng, S. et al. Current treatment options of T cell-associated immunotherapy in multiple myeloma. Clin Exp Med 17, 431–439 (2017). https://doi.org/10.1007/s10238-017-0450-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-017-0450-9

Keywords

Navigation