Skip to main content
Log in

CTLA-4 polymorphisms are associated with treatment outcomes of patients with multiple myeloma receiving bortezomib-based regimens

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Single-nucleotide polymorphisms (SNPs) of cytotoxic T lymphocyte antigen-4 (CTLA-4) are important risk factors associated with autoimmune diseases and malignancies. This study explored the association of CTLA-4SNPs with the development of myeloma and evaluated the outcome of patients receiving bortezomib-based regimens in relation to CTLA-4SNPs. Peripheral blood samples from 86 patients with multiple myeloma (MM) and 154 healthy controls were obtained to investigate CTLA4 polymorphisms. Five SNP genotypes of CTLA-4, namely, −1772 (rs733618), −1661 (rs4553808), −318 (rs5742909), CT60 (rs3087243), and +49 (rs231775), were evaluated through TaqMan SNP genotyping assays (Applied Biosystems). Some of the CTLA-4 polymorphisms displayed frequencies that vary among ethnic groups. Kaplan–Meier analysis revealed that patients with rs733618 GG showed a significantly lower disease-free survival (0 vs. 57.4%, P = 0.020) and overall survival (46.3 vs. 83.3%, P = 0.026) than those with GA+AA following bortezomib-based therapy. Multivariate analyses showed that rs733618 GG was a risk factor for OS (HR = 0.012; 95% CI = 0.001–0.199; P = 0.002). The incidence of nonhematologic grade 3/4 adverse events significantly increased in the rs4553808 GG+GA group compared with that in the AA group (P = 0.036). CTLA-4 rs733618 GG reduced the progression-free survival and the overall survival of patients with MM who received bortezomib-based therapy. Information regarding CTLA-4 polymorphisms and haplotypes may be used to improve MM therapy. Future studies must determine the precise effect of CTLA-4 polymorphisms and haplotypes on MM therapy outcomes by using different cohorts with a large number of subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kyle RA, Rajkumar SV (2004) Multiple myeloma. N Engl J Med 351(18):1860–1873

    Article  CAS  PubMed  Google Scholar 

  2. Richardson PG, Barlogie B, Berenson J et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348(26):2609–2617

    Article  CAS  PubMed  Google Scholar 

  3. Richardson PG, Sonneveld P, Schuster MW et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498

    Article  CAS  PubMed  Google Scholar 

  4. San Miguel JF, Schlag R, Khuageva NK et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359(9):906–917

    Article  CAS  PubMed  Google Scholar 

  5. Orlowski RZ, Kuhn DJ (2008) Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 14(6):1649–1657

    Article  CAS  PubMed  Google Scholar 

  6. Pineda-Roman M, Zangari M, Haessler J et al (2008) Sustained complete remissions in multiple myeloma linked to bortezomib in total therapy 3: comparison with total therapy 2. Br J Haematol 140(6):625–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rajkumar SV, Sonneveld P (2009) Front-line treatment in younger patients with multiple myeloma. Semin Hematol 46(2):118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Teft WA, Kirchhof MG, Madrenas J (2006) A molecular perspective of CTLA-4 function. Annu Rev Immunol 24:65–97

    Article  CAS  PubMed  Google Scholar 

  9. Ahmed S, Ihara K, Kanemitsu S et al (2001) Association of CTLA-4 but not CD28 gene polymorphisms with systemic lupus erythematosus in the Japanese population. Rheumatology (Oxford) 40:662–667

    Article  CAS  Google Scholar 

  10. Hudson LL, Rocca K, Song YW et al (2002) CTLA-4 gene polymorphisms in systemic lupus erythematosus: a highly significant association with a determinant in the promoter region. Hum Genet 111:452–455

    Article  CAS  PubMed  Google Scholar 

  11. Haller K, Kisand K, Pisarev H et al (2007) Insulin gene VNTR, CTLA-4 +49A/G and HLA-DQB1 alleles distinguish latent autoimmune diabetes in adults from type 1 diabetes and from type 2 diabetes group. Tissue Antigens 69:121–127

    Article  CAS  PubMed  Google Scholar 

  12. Balic I, Angel B, Codner E et al (2009) Association of CTLA-4 polymorphisms and clinical-immunologic characteristics at onset of type 1 diabetes mellitus in children. Hum Immunol 70:116–120

    Article  CAS  PubMed  Google Scholar 

  13. Kouki T, Sawai Y, Gardine CA et al (2000) CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves’ disease. J Immunol 165:6606–6611

    Article  CAS  PubMed  Google Scholar 

  14. Sun T, Zhou Y, Yang M et al (2008) Functional genetic variations in cytotoxic T-lymphocyte antigen 4 and susceptibility to multiple types of cancer. Cancer Res 68:7025–7034

    Article  CAS  PubMed  Google Scholar 

  15. Ghaderi A, Yeganeh F, Kalantari T et al (2004) Cytotoxic T lymphocyte antigen-4 gene in breast cancer. Breast Cancer Res Treat 86:1–7

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Li D, Fu Z et al (2007) Association of CTLA-4 gene polymorphisms with sporadic breast cancer in Chinese Han population. BMC Cancer 7:173

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li D, Zhang Q, Xu F et al (2012) Association of CTLA-4 gene polymorphisms with sporadic breast cancer risk and clinical features in Han women of northeast china. Mol Cell Biochem 364:283–290

    Article  CAS  PubMed  Google Scholar 

  18. Su TH, Chang TY, Lee YJ et al (2007) CTLA-4 gene and susceptibility to human papillomavirus-16-associated cervical squamous cell carcinoma in Taiwanese women. Carcinogenesis 28:1237–1240

    Article  CAS  PubMed  Google Scholar 

  19. Castro FA, Haimila K, Sareneva I et al (2009) Association of HLA-DRB1, interleukin-6 and cyclin D1 polymorphisms with cervical cancer in the Swedish population—a candidate gene approach. Int J Cancer 125:1851–1858

    Article  CAS  PubMed  Google Scholar 

  20. Pawlak E, Karabon L, Wlodarska-Polinska I et al (2010) Influence of CTLA-4/CD28/ICOS gene polymorphisms on the susceptibility to cervical squamous cell carcinoma and stage of differentiation in the Polish population. Hum Immunol 71:195–200

    Article  CAS  PubMed  Google Scholar 

  21. Ivansson EL, Juko-Pecirep I, Gyllensten UB (2010) Interaction of immunological genes on chromosome 2q33 and IFNG in susceptibility to cervical cancer. Gynecol Oncol 116:544–548

    Article  CAS  PubMed  Google Scholar 

  22. Rahimifar S, Erfani N, Sarraf Z et al (2010) CTLA-4 gene variations may influence cervical cancer susceptibility. Gynecol Oncol 119:136–139

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Zhou YF, Guo HY et al (2011) Association between CTLA-4 gene polymorphism and susceptibility to cervical cancer. Zhonghua Zhong Liu Za Zhi 33:681–684

    CAS  PubMed  Google Scholar 

  24. Jiang L, Luo RY, Zhang W et al (2011) Single nucleotide polymorphisms of CTLA4 gene and their association with human cervical cancer. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 28:313–317

    CAS  PubMed  Google Scholar 

  25. Gokhale P, Kerkar S, Tongaonkar H et al (2013) CTLA-4 gene polymorphism at position +49 A>G in exon 1: a risk factor for cervical cancer in Indian women. Cancer Genet 206:154–161

    Article  CAS  PubMed  Google Scholar 

  26. Khaghanzadeh N, Erfani N, Ghayumi MA et al (2010) CTLA4 gene variations and haplotypes in patients with lung cancer. Cancer Genet Cytogenet 196:171–174

    Article  CAS  PubMed  Google Scholar 

  27. Song B, Liu Y, Liu J et al (2011) CTLA-4 +49A>G polymorphism is associated with advanced non-small cell lung cancer prognosis. Respiration 82:439–444

    Article  CAS  PubMed  Google Scholar 

  28. Karabon L, Pawlak E, Tomkiewicz A et al (2011) CTLA-4, CD28, and ICOS gene polymorphism associations with non-small-cell lung cancer. Hum Immunol 72:947–954

    Article  CAS  PubMed  Google Scholar 

  29. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736

    Article  CAS  PubMed  Google Scholar 

  30. Blade J, Samson D, Reece D et al (1998) Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol 102:1115–1123

    Article  CAS  PubMed  Google Scholar 

  31. Durie BG, Harousseau JL, Miguel JS et al (2006) International uniform response criteria for multiple myeloma. Leukemia 20:1467–1473

    Article  CAS  PubMed  Google Scholar 

  32. National Cancer Institute. National Cancer Institute Cancer Therapy Evaluation Program Common Terminology Criteria for Adverse Events, Version 3.0. 9 August 2006.http://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_30

  33. Hideshima T, Ikeda H, Chauhan D et al (2009) Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 114(5):1046–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Richardson PG, Laubach J, Mitsiades C et al (2010) Tailoring treatment for multiple myeloma patients with relapsed and refractory disease. Oncology (Williston Park) 24(3 Suppl 2):22–29

    Google Scholar 

  35. Bretscher P, Cohn M (1970) A theory of self-nonself discrimination. Science 267:1485–1488

    Google Scholar 

  36. Mueller DL, Jenkins MK, Swartz RH (1989) An accessory cell-derived co-stimulatory signal acts independently of protein kinase C activation to allow T cell proliferation and prevent the induction of unresponsiveness. J Immunol 142:2617–2628

    CAS  PubMed  Google Scholar 

  37. Harding FA, McArthur JG, Raulet DH et al (1992) CD28-mediated signaling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356:607–609

    Article  CAS  PubMed  Google Scholar 

  38. Raab M, Cai YC, Bunnell SC et al (1995) p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol 3-kinase, growth factor receptor-bound protein GRB-2, and T cell specific protein-tyrosine kinase ITK: implications for T-cell costimulation. Proc Natl Acad Sci U S A 92:8891–8895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441(7092):431–436

    Article  CAS  PubMed  Google Scholar 

  40. Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305–334

    Article  CAS  PubMed  Google Scholar 

  41. Krummel MF, Allison JP (1996) CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 183:2533–2540

    Article  CAS  PubMed  Google Scholar 

  42. Purohit S, Podolsky R, Collins C et al (2005) Lack of correlation between the levels of soluble cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and the CT-60 genotypes. J Autoimmune Dis 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu MF, Wang CR, Chen PC et al (2003) Increased expression of soluble cytotoxic T-lymphocyte associated antigen-4 molecule in patients with systemic lupus erythematosus. Scand J Immunol 57:568–572

    Article  CAS  PubMed  Google Scholar 

  44. Sato S, Fujimoto M, Hasegawa M et al (2004) Serum soluble CTLA-4 levels are increased in diffuse cutaneous systemic sclerosis. Rheumatology (Oxford) 43:1261–1266

    Article  CAS  Google Scholar 

  45. Wong CK, Lit LC, Tam LS et al (2005) Aberrant production of soluble costimulatory molecules CTLA-4,CD28, CD80 and CD86 in patients with systemic lupus erythematosus. Rheumatology (Oxford) 44:989–994

    Article  CAS  Google Scholar 

  46. Oaks MK, Hallett KM, Penwell RT et al (2000) A native soluble form of CTLA-4. Cell Immunol 201:144–153

    Article  CAS  PubMed  Google Scholar 

  47. Saverino D, Brizzolara R, Simone R et al (2007) Soluble CTLA-4 in autoimmune thyroid diseases: relationship with clinical status and possible role in the immune response dysregulation. Clin Immunol 123:190–198

    Article  CAS  PubMed  Google Scholar 

  48. Perez-Garcia A, De la Camara R, Roman-Gomez J et al (2007) CTLA-4 polymorphisms and clinical outcome after allogeneic stem cell transplantation from HLA-identical sibling donors. Blood 110:461–467

    Article  CAS  PubMed  Google Scholar 

  49. Ueda H, Howson JM, Esposito L et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511

    Article  CAS  PubMed  Google Scholar 

  50. Mäurer M, Loserth S, Kolb-Mäurer A et al (2002) A polymorphism in the human cytotoxic T-lymphocyte antigen 4 (CTLA4) gene (exon 1 +49) alters T-cell activation. Immunogenetics 54:1–8

    Article  PubMed  Google Scholar 

  51. Ligers A, Teleshova N, Masterman T et al (2001) CTLA-4 gene expression is influenced by promoter and exon 1 polymorphisms. Genes Immun 2:145–152

    Article  CAS  PubMed  Google Scholar 

  52. Wang XB, Zhao X, Giscombe R et al (2002) A CTLA-4 gene polymorphism at position -318 in the promoter region affects the expression of protein. Genes Immun 3:233–234

    Article  PubMed  Google Scholar 

  53. Yousefipour G, Erfani N, Momtahan M et al (2009) CTLA4 exon 1 and promoter polymorphisms in patients with multiple sclerosis. Acta Neurol Scand 120:424–429

    Article  CAS  PubMed  Google Scholar 

  54. Baniasadi V, Narain N, Goswami R et al (2006) Promoter region 2318 C/T and 21661 A/G CTLA-4 single nucleotide polymorphisms and type 1 diabetes in North Indians. Tissue Antigens 67:383–389

    Article  CAS  PubMed  Google Scholar 

  55. Bouqbis L, Izaabel H, Akhayat O, Pérez-Lezaun A et al (2003) Association of the CTLA4 promoter region (−1661G allele) with type 1 diabetes in the South Moroccan population. Genes Immun 4:132–137

    Article  CAS  PubMed  Google Scholar 

  56. Almasi S, Erfani N, Mojtahedi Z et al (2006) Association of CTLA-4 gene promoter polymorphisms with systemic sclerosis in Iranian population. Genes Immun 7:401–406

    Article  CAS  PubMed  Google Scholar 

  57. Kammerer PW, Toyoshima T, Schoder F et al (2010) Association of T-cell regulatory gene polymorphisms with oral squamous cell carcinoma. Oral Oncol 46:543–548

    Article  PubMed  Google Scholar 

  58. Erfani N, Razmkhah M, Talei AR et al (2006) Cytotoxic T lymphocyte antigen-4 promoter variants in breast cancer. Cancer Genet Cytogenet 165:114–120

    Article  CAS  PubMed  Google Scholar 

  59. Bharti V, Mohanti BK, Das SN (2013) Functional genetic variants of CTLA-4 and risk of tobacco-related oral carcinoma in high-risk north Indian population. Hum Immunol 74:348–352

    Article  CAS  PubMed  Google Scholar 

  60. Fernandez-Blanco L, Perez-Pampin E, Gomez-Reino JJ et al (2004) A CTLA-4 polymorphism associated with susceptibility to systemic lupus erythematosus. Arthritis Rheum 50(1):328–329

    Article  CAS  PubMed  Google Scholar 

  61. Liu J, Zhang H (2013 Mar) -1722T/C polymorphism (rs733618) of CTLA-4 significantly associated with systemic lupus erythematosus (SLE): a comprehensive meta-analysis. Hum Immunol 74(3):341–347

    Article  CAS  PubMed  Google Scholar 

  62. Mateos MV, Oriol A, Martinez J, et al. (2009) A prospective, multicenter, randomized, trial of bortezomib/melphalan/prednisone (VMP) versus bortezomib/thalidomide/prednisone (VTP) as induction therapy Followed by maintenance treatment with bortezomib/thalidomide (VT) versus bortezomib/prednisone (VP) in elderly untreated patients with multiple myeloma older than 65 years. Blood (ASH Annual Meeting Abstracts). 114(22):Abstract 3

  63. Reece DE, Trieu Y, Chen C, et al. (2009) Sequencing novel agents in relapsed/refractory multiple myeloma:use of bortezomib-based therapy after lenalidomide + dexamethasone. Blood (ASH Annual Meeting Abstracts). 114(22):Abstract 1853

  64. Mao HT, Wang XB, Zhang L et al (2004) Studies on the genetic pathogenesis of myasthenia gravis caused by CTLA-4 gene polymorphism. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 21:574–578

    CAS  PubMed  Google Scholar 

  65. Jones KA, Kadonaga JT, Rosenfeld PJ et al (1987) A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 48:79–89

    Article  CAS  PubMed  Google Scholar 

  66. Ahmadzadeh M, Johnson LA, Heemskerk B et al (2009 Aug 20) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114(8):1537–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marshall NA, Christie LE, Munro LR et al (2004) Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103(5):1755–1762

    Article  CAS  PubMed  Google Scholar 

  68. Brown RD, Pope B, Yuen E et al (1998) The expression of T cell related costimulatory molecules in multiple myeloma. Leuk Lymphoma 31(3):379–384

    Article  CAS  PubMed  Google Scholar 

  69. Richardson PG, Sonneveld P, Schuster MW et al (2009) Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modification guideline. Br J Haematol 144:895–903

    Article  CAS  PubMed  Google Scholar 

  70. Favis R, Sun Y, van de Velde H et al (2011 Mar) Genetic variation associated with bortezomib-induced peripheral neuropathy. Pharmacogenet Genomics 21(3):121–129

    Article  CAS  PubMed  Google Scholar 

  71. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Richardson PG, Barlogie B, Berenson J et al (2005 Nov 1) Clinical factors predictive of outcome with bortezomib in patients with relapsed, refractory multiple myeloma. Blood 106(9):2977–2981

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all colleagues for their participation in this research.

Funding

This work was supported by the Key Program of the National Natural Science Foundation of China (81230013, 81530046), the Innovative Research Groups of the National Natural Science Foundation of China (81621001), the National Natural Science Foundation of China (grants 81372535 and 81670192), the Beijing Municipal Science and Technology Commission (no. Z121107002612035), the Scientific Research Foundation for Capital Medicine Development (2011-4022-08), and the China National Science and Technology Major Project during12th Five-Year Plan Period (2012ZX09303019).

Author information

Authors and Affiliations

Authors

Contributions

XYQ conducted molecular genetic studies. XYQ and JL collected and analyzed data and wrote the manuscript. GXL, LW, YL, LPX, YJC, KYL, and ZFJ collected and interpreted the data. XJH designed the study and critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-Jun Huang.

Ethics declarations

Ethics approval and consent to participate

All patients provided informed consent for treatment, which was performed using a protocol reviewed and approved by the Peking University Institute of Hematology. All healthy individuals also provided written informed consent. The study was conducted in accordance with the principles of the Declaration of Helsinki.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, XY., Lu, J., Li, GX. et al. CTLA-4 polymorphisms are associated with treatment outcomes of patients with multiple myeloma receiving bortezomib-based regimens. Ann Hematol 97, 485–495 (2018). https://doi.org/10.1007/s00277-017-3203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-017-3203-7

Keywords

Navigation