Skip to main content
Log in

Simulation and experimental study on the influence of lamina on nanoneedle penetration into the cell nucleus

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

We have developed a finite element model to simulate the penetration of nanoneedles into the cellular nucleus. It is found that the nuclear lamina, the primary supporting structure of the nuclear membrane, plays a crucial role in maintaining the integrity of the nuclear envelope and enhancing stress concentration in the nuclear membrane. Notably, nuclear lamina A exhibits a more pronounced effect compared to nuclear lamina B. Subsequently, we further conducted experiments by controlling the time of osteopontin (OPN) treatment to modify the nuclear lamina density, and the results showed that an increase in nuclear lamina density enhances the probability of nanoneedle penetration into the nuclear membrane. Through employing both simulation and experimental techniques, we have gathered compelling evidence indicating that an augmented density of nuclear lamina A can enhance the penetration of nanoneedles into the nuclear membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Ahmar S et al (2020) A revolution toward gene-editing technology and its application to crop improvement. Int J Mol Sci 21:5665

    Article  Google Scholar 

  • Arfsten J, Leupold S, Bradtmöller C, Kampen I, Kwade A (2010) Atomic force microscopy studies on the nanomechanical properties of Saccharomyces cerevisiae. Colloids Surf B 79:284–290

    Article  Google Scholar 

  • Bathe KJ (2007) Finite element method. Wiley Encycl Sci Eng. https://doi.org/10.1002/9780470050118.ecse159

    Article  Google Scholar 

  • Cao X et al (2016) A chemomechanical model for nuclear morphology and stresses during cell transendothelial migration. Biophys J 111:1541–1552. https://doi.org/10.1016/j.bpj.2016.08.011

    Article  Google Scholar 

  • Cotter CJ, Ham DA, Pain CC (2009) A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling. Ocean Model 26:86–90

    Article  Google Scholar 

  • Dahl KN, Kahn SM, Wilson KL, Discher DE (2004) The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J Cell Sci 117:4779–4786

    Article  Google Scholar 

  • Dahl KN, Ribeiro AJ, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102:1307–1318

    Article  Google Scholar 

  • Deveraux S, Allena R, Aubry D (2017) A numerical model suggests the interplay between nuclear plasticity and stiffness during a perfusion assay. J Theor Biol 435:62–77. https://doi.org/10.1016/j.jtbi.2017.09.007

    Article  MathSciNet  Google Scholar 

  • Enyedi B, Niethammer P (2017) Nuclear membrane stretch and its role in mechanotransduction. Nucleus 8:156–161. https://doi.org/10.1080/19491034.2016.1263411

    Article  Google Scholar 

  • Fan N et al (2018) The insertion mechanism of a living cell determined by the stress segmentation effect of the cell membrane during the tip–cell interaction. Small 14:1703868

    Article  Google Scholar 

  • Gaj T, Sirk SJ, Shui S-l, Liu J (2016) Genome-editing technologies: principles and applications. Cold Spring Harbor Perspect Biol 8:a023754

    Article  Google Scholar 

  • Gao W, Yu X (2020) Osteopontin on the exercise ability and biomechanical properties of mesenchymal stem cells. Rev Cient Fac Cienc Vet 30:2366–2375

    Google Scholar 

  • Hansel CS et al (2019) Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano 13:2913–2926

    Article  Google Scholar 

  • Heo S-J et al (2020) Nuclear softening expedites interstitial cell migration in fibrous networks and dense connective tissues. Sci Adv 6:5083

    Article  Google Scholar 

  • Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J (2013) Lamin A/C and emerin regulate MKL1–SRF activity by modulating actin dynamics. Nature 497:507–511

    Article  Google Scholar 

  • Hobson CM, Stephens AD (2020) Modeling of cell nuclear mechanics: classes components, and applications. Cells 9:1. https://doi.org/10.3390/cells9071623

    Article  Google Scholar 

  • Hobson CM, Kern M, O’Brien Iii ET, Stephens AD, Falvo MR, Superfine R (2020) Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics. Mol Biol Cell 31:1788–1801

    Article  Google Scholar 

  • Ingber DE (2008) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97:163–179. https://doi.org/10.1016/j.pbiomolbio.2008.02.005

    Article  Google Scholar 

  • Jagota V, Sethi APS, Kumar K (2013) Finite element method: an overview. Walailak J Sci Technol 10:1–8

    Google Scholar 

  • Kagiwada H, Nakamura C, Kihara T, Kamiishi H, Kawano K, Nakamura N, Miyake J (2010) The mechanical properties of a cell, as determined by its actin cytoskeleton, are important for nanoneedle insertion into a living cell. Cytoskeleton 67:496–503

    Article  Google Scholar 

  • Kamikawa Y et al (2021) OASIS/CREB3L1 is a factor that responds to nuclear envelope stress. Cell Death Discov 7:152. https://doi.org/10.1038/s41420-021-00540-x

    Article  Google Scholar 

  • Khan SH (2019) Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther Nucl Acids 16:326–334

    Article  Google Scholar 

  • Khunsaraki GM, Oscuii HN, Voloshin A (2020) Study of the mechanical behavior of subcellular organelles using a 3D finite element model of the tensegrity structure. Appl Sci 11:249. https://doi.org/10.3390/app11010249

    Article  Google Scholar 

  • Khunsaraki GM, Oscuii HN, Voloshin A (2020) Study of the mechanical behavior of subcellular organelles using a 3D finite element model of the tensegrity structure. Appl Sci 11:249

    Article  Google Scholar 

  • Kim K-H, Lee K, Hong H, Yang D, Ryu W, Nam O, Kim Y-C (2018) Functionalized inclined-GaN based nanoneedles. J Ind Eng Chem 59:184–191

    Article  Google Scholar 

  • Kittisopikul M et al (2021) Computational analyses reveal spatial relationships between nuclear pore complexes and specific lamins. J Cell Biol 220:e202007082

    Article  Google Scholar 

  • Krzemien L, Giergiel M, Kurek A, Barbasz J (2023) The role of the cortex in indentation experiments of animal cells. Biomech Model Mechanobiol 22:177–187

    Article  Google Scholar 

  • Lammerding J, Fong LG, Ji JY, Reue K, Stewart CL, Young SG, Lee RT (2006) Lamins A and C but not Lamin B1 regulate nuclear mechanics. J Biol Chem 281:25768–25780. https://doi.org/10.1074/jbc.M513511200

    Article  Google Scholar 

  • Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X (2020) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 5:1

    Article  Google Scholar 

  • Liu H et al (2014) In situ mechanical characterization of the cell nucleus by atomic force microscopy. ACS Nano 8:3821–3828. https://doi.org/10.1021/nn500553z

    Article  Google Scholar 

  • Liu L et al (2017) Decreased nuclear stiffness via FAK-ERK1/2 signaling is necessary for osteopontin-promoted migration of bone marrow-derived mesenchymal stem cells. Exp Cell Res 355:172–181

    Article  Google Scholar 

  • Liu Y, Mollaeian K, Ren J (2019) Finite element modeling of living cells for AFM indentation-based biomechanical characterization. Micron 116:108–115. https://doi.org/10.1016/j.micron.2018.10.004

    Article  Google Scholar 

  • McCreery KP, Xu X, Scott AK, Fajrial AK, Calve S, Ding X, Neu CP (2021) Nuclear stiffness decreases with disruption of the extracellular matrix in living tissues. Small 17:2006699

    Article  Google Scholar 

  • Mukherjee A, Barai A, Singh RK, Yan W, Sen S (2020) Nuclear plasticity increases susceptibility to damage during confined migration. PLoS Comput Biol 16:e1008300. https://doi.org/10.1371/journal.pcbi.1008300

    Article  Google Scholar 

  • Munjiza AA (2004) The combined finite-discrete element method. Wiley, New York

    Book  Google Scholar 

  • Obataya I, Nakamura C, Han, Nakamura N, Miyake J (2005) Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett 5:27–30

    Article  Google Scholar 

  • Shimi T et al (2008) The A- and B-type nuclear Lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22:3409–3421. https://doi.org/10.1101/gad.1735208

    Article  Google Scholar 

  • Shimi T et al (2015) Structural organization of nuclear Lamins A, C, B1, and B2 revealed by superresolution microscopy. Mol Biol Cell 26:4075–4086

    Article  Google Scholar 

  • Stephens AD, Banigan EJ, Adam SA, Goldman RD, Marko JF (2017) Chromatin and Lamin A determine two different mechanical response regimes of the cell nucleus. Mol Biol Cell 28:1984–1996

    Article  Google Scholar 

  • Swift J et al (2013) Nuclear Lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104

    Article  Google Scholar 

  • Turgay Y et al (2017) The molecular architecture of lamins in somatic cells. Nature 543:261–264

    Article  Google Scholar 

  • Wang K, Qin Y, Chen Y (2021) In situ AFM detection of the stiffness of the in situ exposed cell nucleus. Biochim Biophys Acta Mol Cell Res 1868:118985

    Article  Google Scholar 

  • Wei F, Lan F, Liu B, Liu L, Li G (2016) Poroelasticity of cell nuclei revealed through atomic force microscopy characterization. Appl Phys Lett 109:1–2. https://doi.org/10.1063/1.4968191

    Article  Google Scholar 

  • Yao Y, Lacroix D, Mak AF (2016) Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis. Biomech Model Mechanobiol 15:1495–1508. https://doi.org/10.1007/s10237-016-0779-0

    Article  Google Scholar 

  • Zanta MA, Belguise-Valladier P, Behr J-P (1999) Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci 96:91–96

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the Natural Science Foundation of China (52005084, 5230130299), Fundamental Research Funds for the Central Universities (No. ZYGX2021YGLH225, ZYGX2019J037), and Sichuan Provincial Natural Science Foundation (23NSFSC3423).

Author information

Authors and Affiliations

Authors

Contributions

JZ and NF wrote the main manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Na Fan or Yang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Peng, B., Fan, N. et al. Simulation and experimental study on the influence of lamina on nanoneedle penetration into the cell nucleus. Biomech Model Mechanobiol (2024). https://doi.org/10.1007/s10237-024-01836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10237-024-01836-4

Keywords

Navigation