Skip to main content
Log in

Nonlinear large deformation of a spherical red blood cell induced by ultrasonic standing wave

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A computational model is developed to investigate the nonlinear static deformation of a spherical (osmotically swollen) red blood cell (RBC) induced by ultrasonic standing wave. The ultrasonic standing wave can generate steady acoustic radiation stress to deform the cell, and in turn, the deformed cell reshapes the acoustic field. This is a real-time coupling problem between the acoustic field and the mechanical field. In the computational model, the acoustic radiation stress acting on the RBC membrane is modeled by adopting the nonviscous momentum flux theory. The RBC membrane is modeled as a hyperelastic shell considering the in-plane elasticity, bending elasticity, and surface tension of the membrane. The volume conservation constraint of the membrane sealing fluid is applied to ensure the osmotic balance of the membrane. To address this real-time coupling problem, the computational model is implemented by a finite element method algorithm. The numerical results are compared with the existing theoretical model and experimental data, and the strain hardening trend of the experimental data is successfully predicted, which verifies the accuracy and effectiveness of the computational model. The computational model can accurately extract the mechanical properties of cells from acoustic deformation experiments, which is helpful for the diagnosis of some human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abraham EH, Vos P, Kahn J, Grubman SA, Jefferson DM, Ding I, Okunieff P (1996) Cystic fibrosis hetero- and homozygosity is associated with inhibition of breast cancer growth. Nat Med 2(5):593–596

    Article  Google Scholar 

  • Andrade MAB, Marzo A (2019) Numerical and experimental investigation of the stability of a drop in a single-axis acoustic levitator. Phys Fluids 31(11):117101

    Article  Google Scholar 

  • Augustsson P, Karlsen JT, Su HW, Bruus H, Voldman J (2016) Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat Commun 7:11556

    Article  Google Scholar 

  • Baasch T, Dual J (2020) Acoustic radiation force on a spherical fluid or solid elastic particle placed close to a fluid or solid elastic half-space. Phys Rev Appl 14(2):024052

    Article  Google Scholar 

  • Bansch E, Gotz M (2018) Numerical study of droplet evaporation in an acoustic levitator. Phys Fluids 30(3):037103

    Article  Google Scholar 

  • Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37

    Article  MathSciNet  MATH  Google Scholar 

  • Bernard I, Doinikov AA, Marmottant P, Rabaud D, Poulain C, Thibault P (2017) Controlled rotation and translation of spherical particles or living cells by surface acoustic waves. Lab Chip 17(14):2470–2480

    Article  Google Scholar 

  • Chowdhury F, Na S, Li D, Poh YC, Tanaka TS, Wang F, Wang N (2010) Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater 9(1):82–88

    Article  Google Scholar 

  • COMSOL (2018) COMSOL multiphysics reference manual, COMSOL multiphysics version 5.4. https://doc.comsol.com/5.4/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf. Accessed 23 Oct 2021

  • Dao M, Lim CT, Suresh S (2005) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 53(2):493–494

    Article  Google Scholar 

  • Ding XY, Peng ZL, Lin SCS, Geri M, Li SX, Li P, Chen YC, Dao M, Suresh S, Huang TJ (2014) Cell separation using tilted-angle standing surface acoustic waves. Proc Natl Acad Sci U S A 111(36):12992–12997

    Article  Google Scholar 

  • Doinikov AA, Gerlt MS, Dual J (2020) Acoustic radiation forces produced by sharp-edge structures in microfluidic systems. Phys Rev Lett 124(15):154501

    Article  Google Scholar 

  • Duong TX, Roohbakhshan F, Sauer RA (2017) A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries. Comput Methods Appl Mech Eng 316:43–83

    Article  MathSciNet  MATH  Google Scholar 

  • Elliott CM, Stinner B (2010) Modeling and computation of two phase geometric biomembranes using surface finite elements. J Comput Phys 229(18):6585–6612

    Article  MathSciNet  MATH  Google Scholar 

  • Feng F, Klug WS (2006) Finite element modeling of lipid bilayer membranes. J Comput Phys 220(1):394–408

    Article  MathSciNet  MATH  Google Scholar 

  • Feng Z, Waugh RE, Peng ZL (2020) Constitutive model of erythrocyte membranes with distributions of spectrin orientations and lengths. Biophys J 119(11):2190–2204

    Article  Google Scholar 

  • Gao X, Huang ZP, Qu JM, Fang DN (2014) A curvature-dependent interfacial energy-based interface stress theory and its applications to nano-structured materials: (I) general theory. J Mech Phys Solids 66:59–77

    Article  MathSciNet  MATH  Google Scholar 

  • Gao X, Huang ZP, Fang DN (2017) Curvature-dependent interfacial energy and its effects on the elastic properties of nanomaterials. Int J Solids Struct 113–114:100–107

    Article  Google Scholar 

  • Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao JY, Clark AT, Di Carlo D (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 109(20):7630–7635

    Article  Google Scholar 

  • Haase K, Pelling AE (2015) Investigating cell mechanics with atomic force microscopy. J R Soc Interface 12(104):20140970

    Article  Google Scholar 

  • Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33(1):15–22

    Article  MathSciNet  Google Scholar 

  • Jakobsson O, Antfolk M, Laurell T (2014) Continuous flow two-dimensional acoustic orientation of nonspherical cells. Anal Chem 86(12):6111–6114

    Article  Google Scholar 

  • Lautenschlager F, Paschke S, Schinkinger S, Bruel A, Beil M, Guck J (2009) The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc Natl Acad Sci U S A 106(37):15696–15701

    Article  Google Scholar 

  • Lee CP, Wang TG (1993) Acoustic radiation pressure. J Acoust Soc Am 94(2):1099–1109

    Article  Google Scholar 

  • Link A, Franke T (2020) Acoustic erythrocytometer for mechanically probing cell viscoelasticity. Lab Chip 20(11):1991–1998

    Article  Google Scholar 

  • Liu GT, Lei JJ, Cheng F, Li KM, Ji XR, Huang ZG, Guo ZN (2021) Ultrasonic particle manipulation in glass capillaries: a concise review. Micromachines 12(8):876

    Article  Google Scholar 

  • Marston PL, Goosby SG (1985) Ultrasonically stimulated low-frequency oscillation and breakup of immiscible liquid drops: photographs. Phys Fluids 28(5):1233–1242

    Article  Google Scholar 

  • Mietke A, Otto O, Girardo S, Rosendahl P, Taubenberger A, Golfier S, Ulbricht E, Aland S, Guck J, Fischer-Friedrich E (2015) Extracting cell stiffness from real-time deformability cytometry: theory and experiment. Biophys J 109(10):2023–2036

    Article  Google Scholar 

  • Mishra P, Hill M, Glynne-Jones P (2014) Deformation of red blood cells using acoustic radiation forces. Biomicrofluidics 8(3):034109

    Article  Google Scholar 

  • Nama N, Aguirre M, Humphrey JD, Figueroa CA (2020) A nonlinear rotation-free shell formulation with prestressing for vascular biomechanics. Sci Rep 10(1):17528

    Article  Google Scholar 

  • Nodargi NA, Bisegna P, Caselli F (2017) Effective computational modeling of erythrocyte electro-deformation. Meccanica 52(3):613–631

    Article  MathSciNet  MATH  Google Scholar 

  • Nodargi NA, Kiendl J, Bisegna P, Caselli F, De Lorenzis L (2018) An isogeometric analysis formulation for red blood cell electro-deformation modeling. Comput Methods Appl Mech Eng 338:392–411

    Article  MathSciNet  MATH  Google Scholar 

  • Omori T, Ishikawa T, Barthes-Biesel D, Salsac AV, Imai Y, Yamaguchi T (2012) Tension of red blood cell membrane in simple shear flow. Phys Rev E 86(5):056321

    Article  Google Scholar 

  • Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE (2007) Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci U S A 104(40):15619–15624

    Article  Google Scholar 

  • Park Y, Best CA, Kuriabova T, Henle ML, Feld MS, Levine AJ, Popescu G (2011) Measurement of the nonlinear elasticity of red blood cell membranes. Phys Rev E 83(5):051925

    Article  Google Scholar 

  • Peng XJ, He W, Xin FX, Genin GM, Lu TJ (2020) Standing surface acoustic waves, and the mechanics of acoustic tweezer manipulation of eukaryotic cells. J Mech Phys Solids 145:104134

    Article  MathSciNet  Google Scholar 

  • Pozrikidis C (2001) Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J Fluid Mech 440:269–291

    Article  MATH  Google Scholar 

  • Rapaport E, Fontaine J (1989) Anticancer activities of adenine-nucleotides in mice are mediated through expression of erythrocyte ATP pools. Proc Natl Acad Sci U S A 86(5):1662–1666

    Article  Google Scholar 

  • Sarvazyan AP, Rudenko OV, Nyborg WL (2010) Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med Biol 36(9):1379–1394

    Article  Google Scholar 

  • Sauer RA, Duong TX (2017) On the theoretical foundations of thin solid and liquid shells. Math Mech Solids 22(3):343–371

    Article  MathSciNet  MATH  Google Scholar 

  • Schollhammer D, Fries TP (2019) Kirchhoff-Love shell theory based on tangential differential calculus. Comput Mech 64(1):113–131

    Article  MathSciNet  MATH  Google Scholar 

  • Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46(1):13–137

  • Silva GT, Tian LF, Franklin A, Wang XJ, Han XJ, Mann S, Drinkwater BW (2019) Acoustic deformation for the extraction of mechanical properties of lipid vesicle populations. Phys Rev E 99(6):063002

    Article  Google Scholar 

  • Sprague RS, Olearczyk JJ, Spence DM, Stephenson AH, Sprung RW, Lonigro AJ (2003) Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance. Am J Physiol Heart Circul Physiol 285(2):693–700

    Article  Google Scholar 

  • Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1(1):15–30

    Article  Google Scholar 

  • Tachev KD, Angarska JK, Danov KD, Kralchevsky PA (2000) Erythrocyte attachment to substrates: determination of membrane tension and adhesion energy. Colloid Surf B Biointerfaces 19(1):61–80

    Article  Google Scholar 

  • Tan YH, Sun D, Wang JZ, Huang WH (2010) Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers. IEEE Trans Biomed Eng 57(7):1816–1825

    Article  Google Scholar 

  • Vlahovska PM, Gracia RS, Aranda-Espinoza S, Dimova R (2009) Electrohydrodynamic model of vesicle deformation in alternating electric fields. Biophys J 96(12):4789–4803

    Article  Google Scholar 

  • Wan JD, Ristenpart WD, Stone HA (2008) Dynamics of shear-induced ATP release from red blood cells. Proc Natl Acad Sci U S A 105(43):16432–16437

    Article  Google Scholar 

  • Wijaya FB, Mohapatra AR, Sepehrirahnama S, Lim KM (2016) Coupled acoustic-shell model for experimental study of cell stiffness under acoustophoresis. Microfluid Nanofluid 20(5):69

    Article  Google Scholar 

  • Xin FX, Lu TJ (2016) Acoustomechanical constitutive theory for soft materials. Acta Mech Sin 32(5):828–840

    Article  MathSciNet  MATH  Google Scholar 

  • Xin FX, Lu TJ (2017) A nonlinear acoustomechanical field theory of polymeric gels. Int J Solids Struct 112:133–142

    Article  Google Scholar 

  • Yarin AL, Pfaffenlehner M, Tropea C (1998) On the acoustic levitation of droplets. J Fluid Mech 356:65–91

    Article  MathSciNet  MATH  Google Scholar 

  • Ye T, Nhan PT, Khoo BC, Lim CT (2013) Stretching and relaxation of malaria-infected red blood cells. Biophys J 105(5):1103–1109

    Article  Google Scholar 

  • Yu M, Lira RB, Riske KA, Dimova R, Lin H (2015) Ellipsoidal relaxation of deformed vesicles. Phys Rev Lett 115(12):128303

    Article  Google Scholar 

  • Zheng Y, Nguyen J, Wei Y, Sun Y (2013) Recent advances in microfluidic techniques for single-cell biophysical characterization. Lab Chip 13(13):2464–2483

    Article  Google Scholar 

  • Zhong C, Helfrich W (1989) Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys Rev A 39(10):5280–5288

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11772248, 52075416, and 11761131003) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxian Xin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Numerical model for calculating the energy minimization shape of lipid membrane

Appendix: Numerical model for calculating the energy minimization shape of lipid membrane

According to Sect. 3, the weak form equations for the evolution velocity and curvature tensor, \(\left( {{\mathbf{v}},{\mathbf{b}}} \right)\), of the lipid membrane are given by

$$ \oint_{S\left( \tau \right)} {\left[ { - \gamma {\mathbf{v}} \cdot \delta {\mathbf{v}} - 2E_{b} \left( {h^{2} {\mathbf{i}}_{s} - h{\mathbf{b}} - {\mathbf{n}} \otimes \nabla_{s} h} \right):\nabla_{s} \delta {\mathbf{v}} - \sigma {\mathbf{i}}_{s} :\nabla_{s} \delta {\mathbf{v}} + \Delta p{\mathbf{n}} \cdot \delta {\mathbf{v}}} \right]{\text{d}}a} = 0 $$
(41)
$$ \oint_{S\left( \tau \right)} {\left[ {{\mathbf{b}}:\delta {\mathbf{b}} - \left( {\nabla_{s} \delta {\mathbf{b}}:{\mathbf{i}}_{s} } \right) \cdot {\mathbf{n}} - \left( {{\mathbf{b}}:{\mathbf{i}}_{s} } \right){\mathbf{n}} \otimes {\mathbf{n}}:\delta {\mathbf{b}}} \right]{\text{d}}a} = 0 $$
(42)

Here, \(\left( {\delta {\mathbf{v}},\delta {\mathbf{b}}} \right)\) are the test functions of \(\left( {{\mathbf{v}},{\mathbf{b}}} \right)\). \(\left( {\sigma ,\Delta p} \right)\) are two Lagrange multipliers to enforce the following area and volume constraints. The surface tension \(\sigma\) is now used as a Lagrange multiplier to enforce the surface area retention constraint

$$ \overline{A} - A = 0 $$
(43)

Here, \(\overline{A}\) is the desired surface area, which is considered to be consistent with the reference surface area, and \(A\) is the current surface area. Formally, they are given by

$$ \overline{A} = \oint_{{S_{0} }} {1{\text{d}}A} \;{\text{and}}\;A = \oint_{S\left( \tau \right)} {1{\text{d}}a} $$
(44)

The pressure jump \(\Delta p\) is now used as a Lagrange multiplier to enforce the volume controller

$$ \frac{{{\text{d}}V}}{{{\text{d}}\tau }} = \frac{{\overline{V} - V}}{{\tau_{V} }} $$
(45)

The controller drives the current volume \(V\) to the desired volume \(\overline{V}\) in a characteristic time \(\tau_{V}\). \(\overline{V}\) is derived from \(\overline{A}\) according to the reduced volume \(v\) as

$$ \overline{V} = \frac{{v\overline{A}^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}}} }}{{6{\uppi }^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} }} $$
(46)

\(V\) and its time derivative \({{{\text{d}}V} \mathord{\left/ {\vphantom {{{\text{d}}V} {{\text{d}}\tau }}} \right. \kern-\nulldelimiterspace} {{\text{d}}\tau }}\) are given by

$$ V = \frac{1}{3}\oint_{S} {{\mathbf{x}} \cdot {\mathbf{n}}{\text{d}}v} \;{\text{and}}\;\frac{{{\text{d}}V}}{{{\text{d}}\tau }} = \oint_{S\left( \tau \right)} {{\mathbf{v}} \cdot {\mathbf{n}}{\text{d}}a} $$
(47)

The parameters are set as: \(E_{b} = 1\;{\text{N/m}}\), \(\tau_{V} = 1{\text{s}}\), \(a_{0} = 1\;{\text{m}}\) and \(\gamma = 1\;{\text{Pa}} \cdot {\text{s}} \cdot {\text{m}}^{ - 1}\). The overall computational algorithm is similar to that described in Sect. 3 and Fig. 6: the acoustic module is de-activated, and the mechanical module is replaced with weak form equations (41)–(47) to solve the unknown field variables \(\left( {{\mathbf{v}},{\mathbf{b}}} \right)\) and global variables \(\left( {\sigma ,\Delta p} \right)\), while maintaining the moving mesh module. Taking reduced volume \(v = 0.58\) as an example, Fig. 

Fig. 15
figure 15

The energy minimum shapes calculated from different initial shapes at reduce volume \(v = 0.58\): a the oblate spheroid with a/b = 1.5 and b the prolate spheroid with a/b = 0.44. For both cases, the membrane surface is discretized by 96 line elements. Note that the “moving mesh” module in COMSOL is not only supported in the boundary, so the computational domain of the moving mesh is extended to the internal domain defined by the membrane

15 shows the energy minimum shapes calculated from different initial shapes: (a) an oblate spheroid with three semi-axes \(\left( {1.5a_{0} ,1.5a_{0} ,a_{0} } \right)\) and (b) a prolate spheroid with three semi-axes \(\left( {2.25a_{0} ,a_{0} ,a_{0} } \right)\). It is observed that the initial oblate shape leads to a biconcave energy minimum shape, while the initial prolate shape leads to a peanut-shaped one.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xin, F. Nonlinear large deformation of a spherical red blood cell induced by ultrasonic standing wave. Biomech Model Mechanobiol 21, 589–604 (2022). https://doi.org/10.1007/s10237-021-01550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-021-01550-5

Keywords

Navigation