Skip to main content
Log in

Theoretical modeling of mechanical homeostasis of a mammalian cell under gravity-directed vector

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Translocation of dense nucleus along gravity vector initiates mechanical remodeling of a eukaryotic cell. In our previous experiments, we quantified the impact of gravity vector on cell remodeling by placing an MC3T3-E1 cell onto upward (U)-, downward (D)-, or edge-on (E)- orientated substrate. Our experimental data demonstrate that orientation dependence of nucleus longitudinal translocation is positively correlated with cytoskeletal (CSK) remodeling of their expressions and structures and also is associated with rearrangement of focal adhesion complex (FAC). However, the underlying mechanism how CSK network and FACs are reorganized in a mammalian cell remains unclear. In this paper, we developed a theoretical biomechanical model to integrate the mechanosensing of nucleus translocation with CSK remodeling and FAC reorganization induced by a gravity vector. The cell was simplified as a nucleated tensegrity structure in the model. The cell and CSK filaments were considered to be symmetrical. All elements of CSK filaments and cytomembrane that support the nucleus were simplified as springs. FACs were simplified as an adhesion cluster of parallel bonds with shared force. Our model proposed that gravity vector-directed translocation of the cell nucleus is mechanically balanced by CSK remodeling and FAC reorganization induced by a gravitational force. Under gravity, dense nucleus tends to translocate and exert additional compressive or stretching force on the cytoskeleton. Finally, changes of the tension force acting on talin by microfilament alter the size of FACs. Results from our model are in qualitative agreement with those from experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466

    Article  Google Scholar 

  • Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618

    Article  Google Scholar 

  • Clément G, Slenzka K (2006) Fundamentals of space biology: research on cells, animals, and plants in space, vol 18. Springer, New York

    Book  Google Scholar 

  • Cogoli A, Cogoli-Greuter M (1996) Activation and proliferation of lymphocytes and other mammalian cells in microgravity. Adv Space Biol Med 6:33

    Article  Google Scholar 

  • Feric M, Brangwynne CP (2013) A nuclear F-actin scaffold stabilizes RNP droplets against gravity in large cells. Nat Cell Biol 15(10):1253

    Article  Google Scholar 

  • Feric M, Broedersz CP, Brangwynne CP (2015) Scientific reports 5

  • Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485

    Article  Google Scholar 

  • Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21

    Article  Google Scholar 

  • George TF, Jelski D, Letfullin RR, Zhang G (2011) Computational studies of new materials II: from ultrafast processes and nanostructures to optoelectronics, energy storage and nanomedicine. World Scientific, Singapore

    Book  Google Scholar 

  • Grimm D, Wise P, Lebert M, Richter P, Baatout S (2011) How and why does the proteome respond to microgravity? Expert Rev Proteom 8(1):13

    Article  Google Scholar 

  • Herrmann H, Bär H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8(7):562

    Article  Google Scholar 

  • Howard J et al (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Sunderland

    Google Scholar 

  • Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104(3):613

    Google Scholar 

  • Kalwarczyk T, Ziebacz N, Bielejewska A, Zaboklicka E, Koynov K, Szymanski J, Wilk A, Patkowski A, Gapinski J, Butt HJ et al (2011) Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale. Nano Lett 11(5):2157

    Article  Google Scholar 

  • Kamei H (1994) Relationship of nuclear imaginations to perinuclear rings composed of intermediate filaments in MIA PaCa-2 and some other cells. Cell Struct Funct 19(3):123

    Article  MathSciNet  Google Scholar 

  • Li H, Chen J, Zhang Y, Sun S, Tao Z, Long M (2010) Effects of oriented substrates on cell morphology, the cell cycle, and the cytoskeleton in Ros 17/2.8 cells. Sci China Life Sci 53(9):1085

    Article  Google Scholar 

  • Lim C, Zhou E, Quek S (2006) Mechanical models for living cells—a review. J Biomech 39(2):195

    Article  Google Scholar 

  • Milo R, Phillips R (2015) Cell biology by the numbers. Garland Science, New York

    Google Scholar 

  • Mofrad MR, Kamm MR (2006) Cytoskeletal mechanics: models and measurements in cell mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nava MM, Raimondi MT, Pietrabissa R (2014) Bio-chemo-mechanical models for nuclear deformation in adherent eukaryotic cells. Biomech Model Mechanobiol 13(5):929

    Article  Google Scholar 

  • Nichols HL, Zhang N, Wen X (2006) Proteomics and genomics of microgravity. Physiol Genom 26(3):163

    Article  Google Scholar 

  • Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10(1):11

    Article  Google Scholar 

  • Pollard EC (1965) Theoretical studies on living systems in the absence of mechanical stress. J Theor Biol 8(1):113

    Article  Google Scholar 

  • Prescott D, Myerson D, Wallace J (1972) Enucleation of mammalian cells with cytochalasin B. Exp Cell Res 71(2):480

    Article  Google Scholar 

  • Satcher R, Dewey CF (1996) Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys J 71(1):109

    Article  Google Scholar 

  • Schwarz US, Safran SA (2013) Physics of adherent cells. Rev Mod Phys 85(3):1327

    Article  Google Scholar 

  • Schwarz US, Balaban NQ, Riveline D, Bershadsky A, Geiger B, Safran S (2002) Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys J 83(3):1380

    Article  Google Scholar 

  • Stamenović D, Coughlin MF (1999) The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: a quantitative analysis. J Theor Biol 201(1):63

    Article  Google Scholar 

  • Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, Ginsberg MH, Calderwood DA (2003) Talin binding to integrin ß tails: a final common step in integrin activation. Science 302(5642):103

    Article  Google Scholar 

  • Vorselen D, Roos WH, MacKintosh FC, Wuite GJ, van Loon JJ (2014) The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J 28(2):536

    Article  Google Scholar 

  • Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10(1):75

    Article  Google Scholar 

  • Wegener J, Janshoff A, Galla HJ (1998) Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur Biophys J 28(1):26

    Article  Google Scholar 

  • Wiseman PW, Brown CM, Webb DJ, Hebert B, Johnson NL, Squier JA, Ellisman MH, Horwitz A (2004) Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy. J Cell Sci 117(23):5521

    Article  Google Scholar 

  • Zhang C, Zhou L, Zhang F, Lü D, Li N, Zheng L, Xu Y, Li Z, Sun S, Long M (2017) Mechanical remodeling of normally sized mammalian cells under a gravity vector. FASEB J 31(2):802

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Strategic Priority Research Program of Chinese Science Academy of Sciences grant XDA04020219, National Natural Science Foundation of China grant 31110103918, and National Key Basic Research Foundation of China grant 2011CB710904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mian Long.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix 1: Length changes of MT or MF in E

Appendix 1: Length changes of MT or MF in E

As shown in Fig. 7, we set up a three-dimensional Cartesian coordinate system by taking the y-axis in the opposite direction of gravity and x-y coordinate plane at the contact surfaces between cell and substrate. R is cell radius, r is nucleus radius, and h is the distance from nucleus centroid to the substrate surface. \(\theta \) is the angle between MFs or MTs and substrates. \(\overline{p^{P}}\) is a radial MT/MF, and \(\varphi \) is the angle between the projections of \(\overline{p^{P}}\) on x-y coordinate plane and x axis.

Fig. 7
figure 7

A nucleated cell in E-oriented substrate in the three-dimensional coordinate system before nucleus translocation

Cartesian coordinate for points P and p can be determined from the coordinate transformations

$$\begin{aligned} P = (R\cos \varphi , R\sin \varphi , 0),\quad p = (r\cos \varphi , r\sin \varphi , h). \end{aligned}$$
(23)

Then, the initial length of MFs and MTs can be expressed as

$$\begin{aligned} \ell _0&= \sqrt{(R\cos \varphi -r\cos \varphi )^2 + (R\sin \varphi -r\sin \varphi )^2 + h^2}\nonumber \\&= \sqrt{(R-r)^2 + h^2}. \end{aligned}$$
(24)

1.1 If \(\Delta h^{E}=\Delta h_{\parallel }\), the compressed length and additional force of MTs

If nucleus translocation \(\Delta h^{E}=\Delta h_{\parallel }\) is parallel to gravity, Cartesian coordinate for point p will be changed into:

$$\begin{aligned} p{\prime } = (r\cos \varphi ,\, r\sin \varphi -\Delta h_{\parallel },\, h). \end{aligned}$$
(25)

The corresponding length of MTs can be expressed as:

$$\begin{aligned} \ell (\Delta h_{\parallel })&=\sqrt{(R\cos \varphi -r\cos \varphi )^{2}+(R\sin \varphi -r\sin \varphi +}\nonumber \\ {}&\qquad \overline{+\Delta h_{\parallel })^{2}+(0-h)^{2}}\nonumber \\&=\sqrt{(R-r)^{2}+h^{2}+\Delta h_{\parallel }^{2}+2(R-r)\Delta h_{\parallel }\sin \varphi }\nonumber \\&=\sqrt{\ell _0^{2}+\Delta h_{\parallel }^{2}+2(R-r)\Delta h_{\parallel }\sin \varphi }. \end{aligned}$$
(26)

Then, the Taylor polynomial for \(\ell (\Delta h_{\parallel })\) at zero is defined by

$$\begin{aligned} \ell (\Delta h_{\parallel }) = \ell _0 + \frac{(R-r)\sin \varphi }{\ell _0}\Delta h_{\parallel } + O\big (\Delta h_{\parallel }^2\big ). \end{aligned}$$
(27)

Thus, we have

$$\begin{aligned} \Delta \ell = \ell - \ell _0 \approx \frac{(R-r)\sin \varphi }{\ell _0}\Delta h_{\parallel } = \sin \varphi \cos \theta \Delta h_{\parallel }, \end{aligned}$$
(28)

where \(\varphi \in (\pi ,2\pi )\) since MTs mainly resist compression. We can find the y component resultant force \(F_y\) by the algebraic summing of the components of the forces in the y direction,

$$\begin{aligned} F_{y}&=-\int _{\pi }^{2\pi }\frac{n_{{t}}k_{{t}}}{2\pi }\sin \varphi \cos \theta \Delta h_{\parallel }\cos \theta \mathrm {d}\varphi \nonumber \\&=-\frac{n_{{t}}k_{{t}}}{2\pi }\Delta h_{\parallel }\cos ^{2}\theta \int _{\pi }^{2\pi }\sin \varphi \mathrm {d}\varphi \nonumber \\&=\frac{n_{{t}}k_{{t}}}{\pi }\Delta h_{\parallel }\cos ^{2}\theta \nonumber \\&\approx \frac{n_{{t}}k_{{t}}}{\pi }\Delta h_{\parallel }. \end{aligned}$$
(29)

1.2 If \(\Delta h^{E}=\Delta h_{\perp }\), the stretched length and additional force of MFs

If nucleus migration \(\Delta h^{E}=\Delta h_{\perp }\) is perpendicular to MT, Cartesian coordinate for point p will be changed into

$$\begin{aligned} p' = (r\cos \varphi ,\, r\sin \varphi -\Delta h_{\perp }\sin \theta ,\, h+\Delta h_{\perp }\cos \theta ). \end{aligned}$$
(30)

The corresponding length of MFs can be expressed as

$$\begin{aligned} \ell (\Delta h_{\perp })&=\sqrt{(R\cos \varphi -r\cos \varphi )^{2}+(R\sin \varphi -r\sin \varphi + }\nonumber \\&\qquad \overline{+\Delta h_{\perp }\sin \theta )^{2}+(h+\Delta h_{\perp }\cos \theta )^{2}}\nonumber \\&=\sqrt{(R-r)^{2}+2(R-r)\Delta h_{\perp }\sin \varphi \sin \theta +} \nonumber \\&\qquad \overline{+h^{2}+\Delta h_{\perp }^{2} +2h\Delta h_{\perp }\cos \theta }\nonumber \\&=\sqrt{2\big [(R-r)\sin \varphi \sin \theta +h\cos \theta \big ]\Delta h_{\perp }+}\nonumber \\&\qquad \overline{+\ell _{0}+\Delta h_{\perp }^{2}}. \end{aligned}$$
(31)

Then, the Taylor polynomial for \(\ell (\Delta h_{\perp })\) at zero is defined by

$$\begin{aligned} \ell (\Delta h_{\perp }) = \ell _0^2&+ \frac{(R-r)\sin \varphi \sin \theta +h\cos \theta }{\ell _0}\Delta h_{\perp }\nonumber \\&+ O\big (\Delta h_{\perp }^2\big ). \end{aligned}$$
(32)

Thus, we have

$$\begin{aligned} \Delta \ell&= \ell - \ell _0 \approx \frac{(R-r)\sin \varphi \sin \theta +h\cos \theta }{\ell _0}\Delta h_{\perp }\nonumber \\&= \sin \theta \cos \theta (1+\sin \varphi )\Delta h_{\perp }. \end{aligned}$$
(33)

We can find y and z components resultant force \(F_y\) and \(F_z\) by the algebraic summing of the components of the forces in y and z directions,

$$\begin{aligned} F_{y}&=\int _{0}^{2\pi }\frac{n_{{a}}k_{{a}}}{2\pi }\sin \theta \cos \theta (1+\sin \varphi )\Delta h_{\perp }\cos \theta \sin \varphi \mathrm {d}\varphi \nonumber \\&=\frac{n_{{a}}k_{{a}}}{2\pi }\Delta h_{\perp }\sin \theta \cos ^{2}\theta \int _{0}^{2\pi }(1+\sin \varphi )\sin \varphi \mathrm {d}\varphi \nonumber \\&=\frac{n_{{a}}k_{{a}}}{2}\Delta h_{\perp }\sin \theta \cos ^{2}\theta \nonumber \\&\approx \frac{1}{2}n_{{a}}k_{{a}}\theta \Delta h_{\perp }, \end{aligned}$$
(34)
$$\begin{aligned} F_{z}&=\int _{0}^{2\pi }\frac{n_{{a}}k_{{a}}}{2\pi }\sin \theta \cos \theta (1+\sin \varphi )\Delta h_{\perp }\sin \theta \mathrm {d}\varphi \nonumber \\&=\frac{n_{{a}}k_{{a}}}{2\pi }\sin ^{2}\theta \cos \theta \Delta h_{\perp }\int _{0}^{2\pi }(1+\sin \varphi )\mathrm {d}\varphi \nonumber \\&=n_{{a}}k_{{a}}\sin ^{2}\theta \cos \theta \Delta h_{\perp }\nonumber \\&\approx n_{{a}}k_{{a}}\theta ^{2}\Delta h_{\perp }. \end{aligned}$$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhang, C., Zhang, F. et al. Theoretical modeling of mechanical homeostasis of a mammalian cell under gravity-directed vector. Biomech Model Mechanobiol 17, 191–203 (2018). https://doi.org/10.1007/s10237-017-0954-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0954-y

Keywords

Navigation