Skip to main content

Advertisement

Log in

Verification of a virtual fields method to extract the mechanical properties of human optic nerve head tissues in vivo

Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

We aimed to verify a custom virtual fields method (VFM) to estimate the patient-specific biomechanical properties of human optic nerve head (ONH) tissues, given their full-field deformations induced by intraocular pressure (IOP). To verify the accuracy of VFM, we first generated ‘artificial’ ONH displacements from predetermined (known) ONH tissue biomechanical properties using finite element analysis. Using such deformations, if we are able to match back the known biomechanical properties, it would indicate that our VFM technique is accurate. The peripapillary sclera was assumed anisotropic hyperelastic, while all other ONH tissues were considered isotropic. The simulated ONH displacements were fed into the VFM algorithm to extract back the biomechanical properties. The robustness of VFM was also tested against rigid body motions and noise added to the simulated displacements. Then, the computational speed of VFM was compared to that of a gold-standard stiffness measurement method (inverse finite element method or IFEM). Finally, as proof of principle, VFM was applied to IOP-induced ONH deformation data (obtained from one subject’s eye imaged with OCT), and the biomechanical properties of the prelamina and lamina cribrosa (LC) were extracted. From given ONH displacements, VFM successfully matched back the biomechanical properties of ONH tissues with high accuracy and efficiency. For all parameters, the percentage errors were less than 0.05%. Our method was insensitive to rigid body motions and was also able to recover the material parameters in the presence of noise. VFM was also found 125 times faster than the gold-standard IFEM. Finally, the estimated shear modulus for the prelamina and the LC of the studied subject’s eye were 33.7 and 63.5 kPa, respectively. VFM may be capable of measuring the biomechanical properties of ONH tissues with high speed and accuracy. It has potential in identifying patient-specific ONH biomechanical properties in the clinic if combined with optical coherence tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Acton QA (2012) Issues in biomedical engineering research and application. Scholarly Editions, Atlanta

  • Avril S, Badel P, Duprey A (2010) Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements. J Biomech 43:2978–2985. doi:10.1016/j.jbiomech.2010.07.004

    Article  Google Scholar 

  • Avril S, Grediac M, Pierron F (2004) Sensitivity of the virtual fields method to noisy data. Comput Mech 34:439–452. doi:10.1007/s00466-004-0589-6

    Article  MATH  Google Scholar 

  • Avril S, Pierron F (2007) General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int J Solids Struct 44:4978–5002

    Article  MATH  Google Scholar 

  • Balaratnasingam C, Morgan WH, Bass L, Matich G, Cringle SJ, Yu D-Y (2007) Axonal transport and cytoskeletal changes in the laminar regions after elevated intraocular pressure. Investig Ophthalmol Vis Sci 48:3632–3644

    Article  Google Scholar 

  • Bellezza A (2002) Biomechanical properties of the normal and early glaucomatous optic nerve head: an experimental and computational study using the monkey model. Department of Biomedical Engineering, Tulane University, New Orleans

    Google Scholar 

  • Bellini C, Ferruzzi J, Roccabianca S, Di Martino E, Humphrey J (2014) A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann Biomed Eng 42:488–502

    Article  Google Scholar 

  • Bersi MR, Bellini C, Di Achille P, Humphrey JD, Genovese K, Avril S (2016) Novel methodology for characterizing regional variations in the material properties of murine aortas. J Biomech Eng 138:071005

    Article  Google Scholar 

  • Burgoyne CF, Crawford Downs J, Bellezza AJ, Francis Suh J-K, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retinal Eye Res 24:39–73

    Article  Google Scholar 

  • Chen K, Rowley AP, Weiland JD, Humayun MS (2014) Elastic properties of human posterior eye. J Biomed Mater Res Part A 102:2001–2007

    Article  Google Scholar 

  • Chen K, Weiland JD (2010) Anisotropic and inhomogeneous mechanical characteristics of the retina. J Biomech 43:1417–1421

    Article  Google Scholar 

  • Chen K, Weiland JD (2012) Mechanical characteristics of the porcine retina in low temperatures. Retina 32:844–847

    Article  Google Scholar 

  • Coleman DJ, Trokel S (1969) Direct-recorded intraocular pressure variations in a human subject. Arch Ophthalmol 82:637–640

    Article  Google Scholar 

  • Coudrillier B, Boote C, Ha Quigley, Nguyen TD (2013) Scleral anisotropy and its effects on the mechanical response of the optic nerve head. Biomech Model Mechanobiol 12:941–963. doi:10.1007/s10237-012-0455-y

    Article  Google Scholar 

  • Coudrillier B, Tian J, Alexander S, Myers KM, Ha Quigley, Nguyen TD (2012) Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Investig Ophthalmol Vis Sci 53:1714–1728. doi:10.1167/iovs.11-8009

    Article  Google Scholar 

  • Danford FL, Yan D, Dreier RA, Cahir TM, Girkin CA, Geest JPV (2013) Differences in the region-and depth-dependent microstructural organization in normal versus glaucomatous human posterior scleraemicrostructural organization of human posterior sclerae. Investig Ophthalmol Vis Sci 54:7922–7932

    Article  Google Scholar 

  • Das S, Konar A, Chakraborty UK (2005) Two improved differential evolution schemes for faster global search. In: Proceedings of the 7th annual conference on Genetic and evolutionary computation. ACM, pp 991–998

  • Edwards ME, Good TA (2001) Use of a mathematical model to estimate stress and strain during elevated pressure induced lamina cribrosa deformation. Curr Eye Res 23:215–225

    Article  Google Scholar 

  • Eilaghi A, Flanagan JG, Tertinegg I, Simmons CA, Brodland GW, Ethier CR (2010) Biaxial mechanical testing of human sclera. J Biomech 43:1696–1701

    Article  Google Scholar 

  • Friberg TR, Lace JW (1988) A comparison of the elastic properties of human choroid and sclera. Exp Eye Res 47:429–436

    Article  Google Scholar 

  • Geraghty B, Jones SW, Rama P, Akhtar R, Elsheikh A (2012) Age-related variations in the biomechanical properties of human sclera. J Mechan Behav Biomed Mater 16:181–191

    Article  Google Scholar 

  • Girard MJ, Strouthidis NG, Desjardins A, Mari JM, Ethier CR (2013) In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm. J R Soc Interface 10:20130459

    Article  Google Scholar 

  • Girard MJ et al (2016) In vivo 3-dimensional strain mapping of the optic nerve head following intraocular pressure lowering by trabeculectomy. Ophthalmology 123:1190–1200

    Article  Google Scholar 

  • Girard MJa, Downs JC, Bottlang M, Burgoyne CF, Suh J-KF (2009a) Peripapillary and posterior scleral mechanics-part II: experimental and inverse finite element characterization. J Biomech Eng 131:051012. doi:10.1115/1.3113683

    Article  Google Scholar 

  • Girard MJa, Downs JC, Burgoyne CF, Suh J-KF (2009b) Peripapillary and posterior scleral mechanics-part I: development of an anisotropic hyperelastic constitutive model. J Biomech Eng 131:051011. doi:10.1115/1.3113682

    Article  Google Scholar 

  • Gouget CLM, Girard MJ, Ethier CR (2012) A constrained von Mises distribution to describe fiber organization in thin soft tissues. Biomech Model Mechanobiol 11:475–482. doi:10.1007/s10237-011-0326-y

    Article  Google Scholar 

  • Graebel W, Van Alphen G (1977) The elasticity of sclera and choroid of the human eye, and its implications on scleral rigidity and accommodation. J Biomech Eng 99:203–208

    Article  Google Scholar 

  • Grédiac M, Pierron F (2006) Applying the virtual fields method to the identification of elasto-plastic constitutive parameters. Int J Plast 22:602–627

    Article  MATH  Google Scholar 

  • Grytz R et al (2013) Material properties of the posterior human sclera. J Mech Behav Biomed Mater 29:602–617. doi:10.1016/j.jmbbm.2013.03.027

    Article  Google Scholar 

  • Grytz R, Fazio MA, Libertiaux V, Bruno L, Gardiner S, Girkin CA, Downs JC (2014) Age-and race-related differences in human scleral material propertiesscleral material property changes with age and race. Investig Ophthalmol Vis Sci 55:8163–8172

    Article  Google Scholar 

  • Guélon T, Toussaint E, Le Cam J-B, Promma N, Grediac M (2009) A new characterisation method for rubber. Polym Test 28:715–723

    Article  MATH  Google Scholar 

  • Hao W, Zhang Y, Yuan Y (2016) Eigenfunction virtual fields method for thermo-mechanical parameters identification of composite materials. Polym Test 50:224–234

    Article  Google Scholar 

  • Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120:1268–1279

    Article  Google Scholar 

  • Johnstone J et al (2014) Variation of the axial location of bruch’s membrane opening with age, choroidal thickness race effect of age on Bruch’s membrane opening position. Investig Ophthalmol Vis Sci 55:2004–2009

    Article  Google Scholar 

  • Jones I, Warner M, Stevens J (1992) Mathematical modelling of the elastic properties of retina: a determination of Young’s modulus. Eye 6:556–559

    Article  Google Scholar 

  • Jordan P, Socrate S, Zickler T, Howe R (2009) Constitutive modeling of porcine liver in indentation using 3D ultrasound imaging. J Mechan Behav Biomed Mater 2:192–201

    Article  Google Scholar 

  • Kim J-H, Avril S, Duprey A, Favre J-P (2012) Experimental characterization of rupture in human aortic aneurysms using a full-field measurement technique. Biomech Model Mechanobiol 11:841–853

    Article  Google Scholar 

  • Leske MC, Wu S-Y, Hennis A, Honkanen R, Nemesure B (2008) Risk factors for incident open-angle glaucoma: the Barbados eye studies. Ophthalmology 115:85–93

    Article  Google Scholar 

  • Lewis JA, Garcia MB, Rani L, Wildsoet CF (2014) Intact globe inflation testing of changes in scleral mechanics in myopia and recovery. Exp Eye Res 127:42–48

    Article  Google Scholar 

  • Liu G-R, Quek SS (2013) The finite element method: a practical course. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  • Maas SA, Ellis BJ, Rawlins DS, Weiss JA (2009) A comparison of FEBio, ABAQUS, and NIKE3D. Results for a suite of verification problems. PhD dissertation, University of Utah

  • Manjunath V, Taha M, Fujimoto JG, Duker JS (2010) Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography. Am J Ophthalmol 150(325–329):e321

    Google Scholar 

  • Midgett DE, Pease ME, Quigley HA, Patel M, Franck C, Nguyen TD (2017) Regional variations in the mechanical strains of the human optic nerve head. In: Mechanics of biological systems and materials, vol 6. Springer, pp 119–127

  • Miller D (1967) Pressure of the lid on the eye. Arch Ophthalmol 78:328–330

    Article  Google Scholar 

  • Moerman KM, Holt CA, Evans SL, Simms CK (2009) Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo. J Biomech 42:1150–1153

    Article  Google Scholar 

  • Morgan WH, Yu D-Y, Cooper RL, Alder VA, Cringle SJ, Constable IJ (1995) The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Investig Ophthalmol Vis Sci 36:1163–1172

    Google Scholar 

  • Norman RE et al (2010) Dimensions of the human sclera: thickness measurement and regional changes with axial length. Exp Eye Res 90:277–284

    Article  Google Scholar 

  • Pierron F, Avril S, Toussaint E, Gre M (2006) The virtual fields method for extracting constitutive parameters from full-field measurements: a review. Strain 42:233–253

    Article  Google Scholar 

  • Pierron F, Grédiac M (2012) The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements. Springer, Berlin

    Book  Google Scholar 

  • Pierron F, Sutton M, Tiwari V (2011) Ultra high speed DIC and virtual fields method analysis of a three point bending impact test on an aluminium bar. Exp Mech 51:537–563

    Article  Google Scholar 

  • Pierron F, Zhavoronok S, Grédiac M (2000) Identification of the through-thickness properties of thick laminated tubes using the virtual fields method. Int J Solids Struct 37:4437–4453

    Article  MATH  Google Scholar 

  • Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer, Berlin

    MATH  Google Scholar 

  • Promma N, Raka B, Grediac M, Toussaint E, Le Cam J-B, Balandraud X, Hild F (2009) Application of the virtual fields method to mechanical characterization of elastomeric materials. Int J Solids Struct 46:698–715

    Article  MATH  Google Scholar 

  • Quigley HA (2005) Glaucoma: macrocosm to microcosm the Friedenwald lecture. Investig Ophthalmol Vis Sci 46:2663–2670

    Article  Google Scholar 

  • Ren R et al (2010) Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology 117:259–266

    Article  Google Scholar 

  • Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82:844–851

    Google Scholar 

  • Schultz DS, Lotz JC, Lee SM, Trinidad ML, Stewart JM (2008) Structural factors that mediate scleral stiffness. Invest Ophthalmol Vis Sci 49:4232–4236

    Article  Google Scholar 

  • Shahidi M, Zeimer RC, Mori M (1990) Topography of the retinal thickness in normal subjects. Ophthalmology 97:1120–1124

    Article  Google Scholar 

  • Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2004) Finite element modeling of optic nerve head biomechanics. Investig Ophthalmol Vis Sci 45:4378–4387. doi:10.1167/iovs.04-0133

    Article  Google Scholar 

  • Sigal IA, Grimm J, Schuman J, Kagemann L, Ishikawa H, Wollstein G (2014a) A method to estimate biomechanics and mechanical properties of optic nerve head tissues from parameters measurable using optical coherence tomography. IEEE Trans Med Imaging. doi:10.1109/TMI.2014.2312133

  • Sigal IA, Wang B, Strouthidis NG, Akagi T, Girard MJ (2014b) Recent advances in OCT imaging of the lamina cribrosa. Br J Ophthalmol 98:ii34–ii39

    Article  Google Scholar 

  • Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt J, Singh K (1991) Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans: the Baltimore Eye Survey. Arch Ophthalmol 109:1090–1095

    Article  Google Scholar 

  • Spoerl E, Boehm AG, Pillunat LE (2005) The influence of various substances on the biomechanical behavior of lamina cribrosa and peripapillary sclera. Investig Ophthalmol Vis Sci 46:1286–1290

    Article  Google Scholar 

  • Tonnu P, Ho T, Sharma K, White E, Bunce C, Garway-Heath D (2005) A comparison of four methods of tonometry: method agreement and interobserver variability. Br J Ophthalmol 89:847–850

    Article  Google Scholar 

  • Toussaint E, Grédiac M, Pierron F (2006) The virtual fields method with piecewise virtual fields. Int J Mech Sci 48:256–264. doi:10.1016/j.ijmecsci.2005.10.002

    Article  MATH  Google Scholar 

  • Tun TA, Thakku SG, Png O, Baskaran M, Htoon HM, Sharma S, Nongpiur M, Cheng CY, Aung T, Strouthidis N, Girard MJA (2016) Shape changes of the anterior lamina cribrosa in normal, ocular hypertensive, and glaucoma eyes following acute intraocular pressure elevation. IOVS 57:4869–4877

  • Wang P, Pierron F, Thomsen OT (2013) Identification of material parameters of PVC foams using digital image correlation and the virtual fields method. Exp Mech 53:1001–1015

    Article  Google Scholar 

  • Wang X et al (2016) Finite element analysis predicts large optic nerve head strains during horizontal eye movementseye movements induce optic nerve head strains. Investig Ophthalmol Vis Sci 57:2452–2462

    Article  Google Scholar 

  • Wollensak G, Spoerl E (2004) Collagen crosslinking of human and porcine sclera. J Cataract Refract Surg 30:689–695

    Article  Google Scholar 

  • Woo SL, Kobayashi aS, Schlegel Wa, Lawrence C (1972) Nonlinear material properties of intact cornea and sclera. Exp Eye Res 14:29–39

    Article  Google Scholar 

  • Yoon S-h, Giannakopoulos I, Siviour CR (2015) Application of the virtual fields method to the uniaxial behavior of rubbers at medium strain rates. Int J Solids Struct 69:553–568

    Article  Google Scholar 

  • Zhang L, Albon J, Jones H, Gouget CL, Ethier CR, Goh JC, Girard MJ (2015) Collagen microstructural factors influencing optic nerve head biomechanics. Investig Ophthalmol Vis Sci 56:2031–2042

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Education, Academic Research Funds, Tier 1 (R-397-000-181-112; Girard) and an NUS Young Investigator Award (NUSYIA_FY13_P03, R-397-000-174-133; Girard).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. A. Girard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Thakku, S.G., Beotra, M.R. et al. Verification of a virtual fields method to extract the mechanical properties of human optic nerve head tissues in vivo. Biomech Model Mechanobiol 16, 871–887 (2017). https://doi.org/10.1007/s10237-016-0858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-016-0858-2

Keywords

Navigation