Skip to main content
Log in

Experimental characterization of rupture in human aortic aneurysms using a full-field measurement technique

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The present study aims at investigating biomechanical failure behaviour of human aneurismal aortic tissues so as to diagnose the rupture risk of aneurysms more accurately. An inflation test is performed on aneurismal aortic tissues up to failure and full-field measurements are achieved using stereo digital image correlation. Then, an appropriate constitutive model derived from histological structure of arteries is adopted to retrieve the Cauchy stress. The virtual fields method is used as an inverse procedure to identify material parameters. Next, the Cauchy stress components are calculated from the identified parameters and the measured Lagrange strain fields. Finally, an important stress parameter which can quantify the strength of aneurismal tissues is derived from the failure stress of aneurismal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avril S, Grédiac M, Pierron F (2004) Sensitivity of the virtual fields method to noisy data. Comput Mech 34(6): 439–452

    Article  MATH  Google Scholar 

  • Avril S, Badel P, Duprey A (2010) Anisotropic and hyperelastic identification of in vitro human arteries from full-field measurements. J Biomech 43(15): 2978–2985

    Article  Google Scholar 

  • Brunon A, Bruyère-Garnier K, Coret M (2011) Characterization of the nonlinear behaviour and the failure of human liver capsule through inflation tests. J Mech Behav Biomed (article in press)

  • Carew T, Vaishnav R, Patel D (1968) Compressibility of the arterial wall. Circ Res 23(1): 61–68

    Google Scholar 

  • Choksy S, Wilmink A, Quick C (1999) Ruptured abdominal aortic aneurysm in the Huntingdon district: a 10-year experience. Ann R Coll Surg Engl 81(1): 27–31

    Google Scholar 

  • Coady M, Rizzo J, Hammond G, Mandapati D, Darr U, Kopf G, Elefteriades J (1997) What is the appropriate size criterion for resection of thoracic aortic aneurysms. J Thorac Cardiovasc Surg 113(3): 476–491

    Article  Google Scholar 

  • Darling R, Messina C, Brewster D, Ottinger L (1977) Autopsy study of unoperated abdominal aortic aneurysms. Circulation 56(3): 161–164

    Google Scholar 

  • Dobrin P (1989) Pathophysiology and pathogenesis of aortic aneurysms. Surg Clin North Am 69(4): 687–703

    Google Scholar 

  • Doyle B, Cloonan A, Walsh M, Vorp D, McGloughlin T (2010) Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. J Biomech 43(7): 1408–1416

    Article  Google Scholar 

  • Fillinger M, Raghavan M, Marra S, Cronenwett J, Kennedy F (2002) In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg 36(3): 589–597

    Article  Google Scholar 

  • Fung Y (1993) Biomechanics: mechanical properties of living tissues. Springer, New York

    Google Scholar 

  • Gasser T, Ogden R, Holzapfel G (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6): 15–35

    Article  Google Scholar 

  • Grédiac M, Toussaint E, Pierron F (2002) Special virtual fields for the direct determination of material parameters with the virtual fields method. 1-principle and definition. Int J Solids Struct 39(10): 2691–2705

    Article  MATH  Google Scholar 

  • Grédiac M, Pierron F, Avril S, Toussaint E (2006) The virtual fields method for extracting constitutive parameters from full-field measurements: a review. Strain 42(4): 233–253

    Article  Google Scholar 

  • He C, Roach M (1994) The composition and mechanical properties of abdominal aortic aneurysms. J Vasc Surg 20(1): 6–13

    Article  Google Scholar 

  • Holzapfel G, Gasser T, Ogden R (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1-3): 1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel G, Sommer G, Gasser C, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modeling. Am J Physiol Heart Circ Physiol 289(5): H2048–H2058

    Article  Google Scholar 

  • Hsu F, Liu A, Down J, Rigamonti D, Humphrey J (1995) A triplane video-based experimental system for studying axisymmetrically inflated biomembranes. IEEE T Bio-Med Eng 42(5): 442–450

    Article  Google Scholar 

  • Humphrey J (2002) Cardiovascular solid mechanics. Springer, New York

    Google Scholar 

  • Luo P, Chao Y, Sutton M, Peters W (1993) Accurate measurement of three dimensional deformations in deformable and rigid bodies using computer vision. Exp Mech 33(2): 123–132

    Article  Google Scholar 

  • Marra S, Kennedy F, Kinkaid J, Fillinger M (2006) Elastic and rupture properties of porcine aortic tissue measured using inflation testing. Cardiovasc Eng 6(4): 123–131

    Article  Google Scholar 

  • Mohan D, Melvin J (1983) Failure properties of passive human aortic tissue. II-biaxial tension tests. J Biomech 16(1): 31–44

    Article  Google Scholar 

  • Nicholls S, Gardner J, Meissner M, Johansen H (1998) Rupture in small abdominal aortic aneurysms. J Vasc Surg 28(5): 884–888

    Article  Google Scholar 

  • Ogden R (1997) Non-linear elastic deformations. Dover Publication, New York

    Google Scholar 

  • Rodríguez J, Ruiz C, Doblaré M, Holzapfel G (2008) Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J Biomech Eng 130(2): 021,023

    Article  Google Scholar 

  • Seshaiyer P, Hsu F, Shah A, Kyriacou S, Humphrey J (2001) Multiaxial mechanical behavior of human saccular aneurysms. Comput Method Biomec 4(3): 281–289

    Article  Google Scholar 

  • Sommer G, Gasser T, Regitnig P, Auer M, Holzapfel G (2008) Dissection properties of the human aortic media: an experimental study. J Biomech Eng 130(2): 021,007

    Article  Google Scholar 

  • Sumner D, Hokanson D, Strandness D (1970) Stress-strain characteristics and collagen-elastin content of abdominal aortic aneurysms. Surg Gynecol Obstet 130(3): 459–466

    Google Scholar 

  • Sutton M, Yan J, Tiwari V, Schreier H, Orteu J (2008) The effect of out-of-plane motion on 2d and 3d digital image correlation measurements. Opt Laser Eng 46(10): 746–757

    Article  Google Scholar 

  • Venkatasubramaniam A, Fagan M, Mehta T, Mylankal K, Ray B, Kuhan G, Chetter I, McCollum P (2004) A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 28(2): 168–176

    Google Scholar 

  • Vorp D (2007) Biomechanics of abdominal aortic aneurysm. J Biomech 40(9): 1887–1902

    Article  Google Scholar 

  • Vorp D, Schiro B, Ehrlich M, Juvonen T, Ergin M, Griffith B (2003) Effect of aneurism on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann Thorac Surg 75(4): 1210–1214

    Article  Google Scholar 

  • Zhang D, Eggleton C, Arola D (2002) Evaluating the mechanical behavior of arterial tissue using digital image correlation. Exp Mech 42(4): 409–416

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH., Avril, S., Duprey, A. et al. Experimental characterization of rupture in human aortic aneurysms using a full-field measurement technique. Biomech Model Mechanobiol 11, 841–853 (2012). https://doi.org/10.1007/s10237-011-0356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-011-0356-5

Keywords

Navigation