Skip to main content
Log in

Relaxed area of 0-homogeneous maps in the strict BV-convergence

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We compute the relaxed Cartesian area for a general 0-homogeneous map of bounded variation, with respect to the strict BV-convergence. In particular, we show that the relaxed area is finite for this class of maps and we provide an integral representation formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Clearly, (1.1) is finite if \(v\in W^{1,1}(\Omega ;\mathbb {R}^2)\) and \(Jv\in L^1(\Omega )\).

  2. Notice that \(u\in C^1(\Omega ;\mathbb {R}^2)\cap W^{1,1}(\Omega ;\mathbb {R}^2)\subset BV(\Omega ;\mathbb {R}^2)\). Neverthless \(Ju\notin L^1(\Omega ;\mathbb {R}^2)\), giving \(\overline{\mathcal {A}}_{L^1}(u;\Omega )=\mathcal {A}(u;\Omega )=+\infty \).

  3. If \({\bar{\tau }}=a\) or \({\bar{\tau }}=b\), E is a semi-open interval.

  4. If the number of jumps is finite, then \(\{t_i\}\) is definitively constant.

  5. \({{\mathbb {S}}}^1\) is identified with \([0,2\pi ]\).

  6. We identify \(\partial B_\varepsilon \) with \([0,2\pi \varepsilon ]\).

  7. See Theorem 2’ in [20]: notice that \(f^*_\rho =|\cdot |\) for every \(\rho \in (0,\ell )\), where \(f^*_\rho \) is the recession function associated to \(f_\rho \).

References

  1. Acerbi, E., Dal Maso, G.: New lower semicontinuity results for polyconvex integrals. Calc. Var. Part. Differ.l Equ. 2, 329–371 (1994)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Oxford University Press, New York (2000)

    Book  Google Scholar 

  3. Bellettini, G., Carano, S., Scala, R.: The relaxed area of \({{\mathbb{S} }}^1\)-valued singular maps in the strict \(BV\)-convergence. ESAIM Control Optim. Calc. Var. 28, 1–38 (2022)

    Article  Google Scholar 

  4. Bellettini, G., Carano, S., Scala, R.: Relaxed area of graphs of piecewise Lipschitz maps in the strict \(BV\)-convergence. Nonlinear Anal. 239, 113424 (2024)

    Article  MathSciNet  Google Scholar 

  5. Bellettini, G., Elshorbagy, A., Paolini, M., Scala, R.: On the relaxed area of the graph of discontinuous maps from the plane to the plane taking three values with no symmetry assumptions. Ann. Mater. Pura Appl. 199, 445–477 (2020)

    Article  MathSciNet  Google Scholar 

  6. Bellettini, G., Elshorbagy, A., Scala, R.: The \(L^1\)-relaxed area of the graph of the vortex map, submitted. Preprint arXiv:2107.07236 (2021)

  7. Bellettini, G., Marziani, R., Scala, R.: A non-parametric Plateau problem with partial free boundary, submitted. Preprint arXiv:2201.06145 (2022)

  8. Bellettini, G., Paolini, M.: On the area of the graph of a singular map from the plane to the plane taking three values. Adv. Calc. Var. 3, 371–386 (2010)

    Article  MathSciNet  Google Scholar 

  9. Bellettini, G., Paolini, M., Tealdi, L.: On the area of the graph of a piecewise smooth map from the plane to the plane with a curve discontinuity. ESAIM Control Optim. Calc. Var. 22, 29–63 (2015)

    Article  MathSciNet  Google Scholar 

  10. Bellettini, G., Paolini, M., Tealdi, L.: Semicartesian surfaces and the relaxed area of maps from the plane to the plane with a line discontinuity. Ann. Mater. Pura Appl. 195, 2131–2170 (2016)

    Article  MathSciNet  Google Scholar 

  11. Creutz, P.: Plateau’s problem for singular curves. Preprint arXiv:1904.12567 (2019)

  12. Creutz, P., Stadler, S.: Embeddedness of minimal disks in spaces with upper curvature bound (in preparation)

  13. Dal Maso, G.: Integral representation on \(BV(\Omega )\) of \(\Gamma \)-limits of variational integrals. Manuscr. Math. 30, 387–416 (1980)

    Article  MathSciNet  Google Scholar 

  14. De Giorgi, E.: On the relaxation of functionals defined on cartesian manifolds. In: Developments in Partial Differential Equations and Applications in Mathematical Physics (Ferrara 1992). Plenum Press, New York (1992)

  15. De Philippis, G.: Weak notions of Jacobian determinant and relaxation. ESAIM Control Optim. Calc. Var. 18, 181–207 (2012)

    Article  MathSciNet  Google Scholar 

  16. Fonseca, I., Fusco, N., Marcellini, P.: On the total variation of the Jacobian. J. Funct. Anal. 207(1), 1–32 (2004)

    Article  MathSciNet  Google Scholar 

  17. Giaquinta, M., Modica, G., Souček, J.: Graphs of finite mass which cannot be approximated in area by smooth graphs. Manuscr. Math. 78, 259–271 (1993)

    Article  MathSciNet  Google Scholar 

  18. Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Variations I, vol. 37. Springer, Berlin (1998)

    Google Scholar 

  19. Giaquinta, M., Modica, G., Souc̆ek, J.: Cartesian Currents in the Calculus of Variations II. Variational Integrals. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 38. Springer, Berlin (1998)

  20. Goffman, C., Serrin, J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31, 159–178 (1964)

    Article  MathSciNet  Google Scholar 

  21. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984)

    Book  Google Scholar 

  22. Lebesgue, H.: Intégrale, Longueur, Aire. Ann. Mater. Pura Appl. 7, 231–359 (1902)

    Article  Google Scholar 

  23. Malý, J.: \(L^p\)-approximation of Jacobians. Comment. Math. Univ. Carolin. 32, 659–666 (1991)

    MathSciNet  Google Scholar 

  24. Mucci, D.: Remarks on the total variation of the Jacobian. Nonlinear Differ. Equ. Appl. 13, 223–233 (2006)

    Article  MathSciNet  Google Scholar 

  25. Mucci, D.: Strict convergence with equibounded area and minimal completely vertical liftings. Nonlinear Anal. 221, 66 (2022)

    Article  MathSciNet  Google Scholar 

  26. Paolini, E.: On the relaxed total variation of singular maps. Manuscr. Math. 111, 499–512 (2003)

    Article  MathSciNet  Google Scholar 

  27. Scala, R.: Optimal estimates for the triple junction function and other surprising aspects of the area functional. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20, 491–564 (2020)

    MathSciNet  Google Scholar 

  28. Serrin, J.: On the definition and properties of certain variational integrals. Trans. Am. Math. Soc. 101, 139–167 (1961)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is indebted to Giovanni Bellettini and Riccardo Scala for having suggested to write this paper and he thanks Paul Creutz for useful discussions. The author is member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the INdAM of Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Carano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carano, S. Relaxed area of 0-homogeneous maps in the strict BV-convergence. Annali di Matematica (2024). https://doi.org/10.1007/s10231-024-01435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10231-024-01435-1

Keywords

Mathematics Subject Classification

Navigation