Skip to main content
Log in

Strict BV relaxed area of Sobolev maps into the circle: the high dimension case

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We deal with the relaxed area functional in the strict BV-convergence of non-smooth maps defined in domains of generic dimension and taking values into the unit circle. In case of Sobolev maps, a complete explicit formula is obtained. Our proof is based on tools from Geometric Measure Theory and Cartesian currents. We then discuss the possible extension to the wider class of maps with bounded variation. Finally, we show a counterexample to the locality property in case of both dimension and codimension larger than two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We refer to [20, Sec. 3.1] for the definition of Brouwer degree of a Sobolev map, see also [4, Sec. 2.3].

  2. The strata of \(G_{u_h}\) must converge to the corresponding ones of \(T_u\) in measure and in total variation.

References

  1. Acerbi, E., Dal Maso, G.: New lower semicontinuity results for polyconvex integrals. Calc. Var. & PDE’s 2, 329–372 (1994)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Oxford (2000)

    Book  Google Scholar 

  3. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1976)

    Article  MathSciNet  Google Scholar 

  4. Bellettini, G., Carano, S., Scala, R.: The relaxed area of \(S^1\)-valued singular maps in the strict BV-convergence. ESAIM Control Optim. Calc. Var. 28, 56 (2022)

    Article  Google Scholar 

  5. Bellettini, G., Carano, S., Scala, R.: Relaxed area of graphs of piecewise Lipschitz maps in the strict BV-convergence. Nonlinear Anal. 239, 113424 (2024)

    Article  MathSciNet  Google Scholar 

  6. Bellettini, G., Elshorbagy, A., Paolini, M., Scala, R.: On the relaxed area of the graph of discontinuous maps from the plane to the plane taking three values with no symmetry assumptions. Ann. Mat. Pura Appl. 199, 445–477 (2020)

    Article  MathSciNet  Google Scholar 

  7. Bellettini, G., Elshorbagy , A., Scala, R.: The \(L^1\)-relaxed area of the vortex map (2021). arXiv:2107.07236

  8. Bellettini, G., Marziani, R., Scala, R.: A non-parametric Plateau problem with partial free boundary. Preprint (2022). arXiv:2201.06145

  9. Bellettini, G., Paolini, M.: On the area of the graph of a singular map from the plane to the plane taking three values. Adv. Calc. Var. 3, 371–386 (2010)

    Article  MathSciNet  Google Scholar 

  10. Bellettini, G., Paolini, M., Tealdi, L.: On the area of the graph of a piecewise smooth map from the plane to the plane with a curve discontinuity. ESAIM Control Optim. Calc. Var 22, 29–63 (2015)

    Article  MathSciNet  Google Scholar 

  11. Bellettini, G., Paolini, M., Tealdi, L.: Semicartesian surfaces and the relaxed area of maps from the plane to the plane with a line discontinuity. Ann. Mat. Pura Appl. 195, 2131–2170 (2016)

    Article  MathSciNet  Google Scholar 

  12. Bellettini, G., Scala, R. , Scianna, G.: Upper bounds for the relaxed area of \({\mathbb{S}}^1\)-valued Sobolev maps and its countably subadditive interior envelope. Preprint (2023). arXiv:2307.06885

  13. Bethuel, F.: The approximation problem for Sobolev maps between two manifolds. Acta Math. 167, 153–206 (1991)

    Article  MathSciNet  Google Scholar 

  14. Carano, S.: Relaxed area of 0-homogeneous maps in the strict BV-convergence. Ann. Mat. Pura Appl. (2024). https://doi.org/10.1007/s10231-024-01435-1

    Article  Google Scholar 

  15. De Giorgi, E.: On the relaxation of functionals defined on cartesian manifolds. In: Developments in Partial Differential Equations and Applications in Mathematical Physics (Ferrara 1992). Plenum Press, New York (1992)

  16. De Lellis, C.: Some remarks on the distributional Jacobian. Nonlinear Anal. 53, 1101–1114 (2003)

    Article  MathSciNet  Google Scholar 

  17. De Philippis, G.: Weak notions of Jacobian determinant and relaxation. ESAIM Control Optim. Calc. Var. 18, 181–207 (2012)

    Article  MathSciNet  Google Scholar 

  18. Federer, H.: Geometric measure theory. In: Grundlehren math. Wissen. 153. Springer, Berlin (1969)

  19. Fonseca, I., Fusco, N., Marcellini, P.: On the total variation of the Jacobian. J. Funct. Anal. 207, 1–32 (2004)

    Article  MathSciNet  Google Scholar 

  20. Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations. I. Cartesian currents. Ergebnisse Math. Grenzgebiete (III Ser), vol. 37. Springer, Berlin (1998)

  21. Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations. II. Variational Integrals. Ergebnisse Math. Grenzgebiete (III Ser), vol. 38. Springer, Berlin (1998)

  22. Giaquinta, M., Mucci, D.: The BV-energy of maps into a manifold: relaxation and density results. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5, 483–548 (2006)

  23. Giaquinta, M., Mucci, D.: Graphs of \(W^{1,1}\)-maps with values in \(S^1\): relaxed energies, minimal connections and lifting. Proc. R. Soc. Edinb. 137A, 937–962 (2007)

    Article  Google Scholar 

  24. Hang, F., Lin, F.: Topology of Sobolev mappings II. Acta Math. 191, 55–107 (2003)

    Article  MathSciNet  Google Scholar 

  25. Hardt, R., Pitts, J.: Solving the Plateau’s problem for hypersurfaces without the compactness theorem for integral currents. In: Allard, W.K., Almgren, F.J. (eds.), Geometric Measure Theory and the Calculus of Variations. Proceedings of Symposia in Pure Mathematics, pp. 255–295, vol. 44. American Mathematical Society, Providence (1986)

  26. Jerrard, R.L., Jung, N.: Strict convergence and minimal liftings in BV. Proc. R. Soc. Edinb. Sect. A 134, 1163–1176 (2004)

    Article  MathSciNet  Google Scholar 

  27. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966)

    Book  Google Scholar 

  28. Mucci, D.: Remarks on the total variation of the Jacobian. NoDEA Nonlinear Differ. Equ. Appl. 13, 223–233 (2006)

    Article  MathSciNet  Google Scholar 

  29. Mucci, D.: A variational problem involving the distributional determinant. Riv. Mat. Univ. Parma New Ser. 1, 321–345 (2010)

    MathSciNet  Google Scholar 

  30. Mucci, D.: Strict convergence with equibounded area and minimal completely vertical liftings. Nonlinear Anal. 221, 112943 (2022)

    Article  MathSciNet  Google Scholar 

  31. Müller, S.: Weak continuity of determinants and nonlinear elasticity. C. R. Acad. Sci. Paris 307, 501–506 (1988)

    MathSciNet  Google Scholar 

  32. Paolini, E.: On the relaxed total variation of singular maps. Manuscr. Math. 111, 499–512 (2003)

    Article  MathSciNet  Google Scholar 

  33. Reshetnyak, Y.G.: On the stability of conformal mappings in multidimensional spaces. Sib. Math. Zhu. 8, 91–114 (1967). English transl.: Siberian Math. J. 8, 69–85 (1967)

  34. Simon, L.: Lectures on Geometric Measure Theory. In: Proceedings of CMA, Vol 3, The Australian National University, Canberra (1983)

  35. Scala, R.: Optimal estimates for the triple junction function and other surprising aspects of the area functional. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20, 491–564 (2020)

  36. Scala, R., Scianna, G.: On the \(L^1\)-relaxed area of graphs of \(BV\) piecewise constant maps taking three values (2023). http://cvgmt.sns.it/paper/6231/

Download references

Acknowledgements

We thank Andrea Marchese for useful discussions. The authors are members of the GNAMPA of INDAM.

Funding

No fundings have been received in the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Mucci.

Ethics declarations

Ethical approval

Not applicable.

Data availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carano, S., Mucci, D. Strict BV relaxed area of Sobolev maps into the circle: the high dimension case. Nonlinear Differ. Equ. Appl. 31, 54 (2024). https://doi.org/10.1007/s00030-024-00941-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-024-00941-8

Keywords

Mathematics Subject Classification

Navigation