Skip to main content
Log in

Geometry of solutions to the c-projective metrizability equation

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

On an almost complex manifold, a quasi-Kähler metric, with canonical connection in the c-projective class of a given minimal complex connection, is equivalent to a nondegenerate solution of the c-projectively invariant metrizability equation. For this overdetermined equation, replacing this maximal rank condition on solutions with a nondegeneracy condition on the prolonged system yields a strictly wider class of solutions with non-vanishing (generalized) scalar curvature. We study the geometries induced by this class of solutions. For each solution, the strict point-wise signature partitions the underlying manifold into strata, in a manner that generalizes the model, a certain Lie group orbit decomposition of \(\mathbb{C}\mathbb{P}^m\). We describe the smooth nature and geometric structure of each strata component, generalizing the geometries of the embedded orbits in the model. This includes a quasi-Kähler metric on the open strata components that becomes singular at the strata boundary. The closed strata inherit almost CR-structures and can be viewed as a c-projective infinity for the given quasi-Kähler metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See the proof of Proposition 14 of [17] for a more details.

  2. For details see Proposition 4.1 of [13] or Proposition 7 of [17].

  3. This term and the method of constructing a special boundary scale was first done the setting of projective differential geometry by Sam Porath in [43].

  4. The prolongation connection is a natural modification of the tractor connection. See, e.g., [24] for a construction for general BGG operators.

References

  1. Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.: Hamiltonian 2-forms in Kähler geometry. II. Global classification. J. Differ. Geom. 68, 277–345 (2004)

    MATH  Google Scholar 

  2. Arias, C., Gover, A.R., Waldron, A.: Conformal geometry of embedded manifolds with boundary from universal holographic formulae. Adv. Math. 284, 107700, 75 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mt. J. Math. 24, 1191–1217 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Bailey, T.N., Eastwood, M.G., Graham, C.R.: Invariant theory for conformal and CR geometry. Ann. Math. 139, 491–552 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Baum, H., Leitner, F.: The geometric structure of Lorentzian manifolds with twistor spinors in low dimension. Dirac operators: yesterday and today, pp. 229–240. International Press, Somerville (2005)

    MATH  Google Scholar 

  6. Bochner, S.: Curvature in Hermitian metric. Bull. Am. Math. Soc. 53, 179–195 (1947)

    MathSciNet  MATH  Google Scholar 

  7. Bolsinov, A.V., Matveev, V.S.: Local normal forms for geodesically equivalent pseudo-Riemannian metrics. Trans. Am. Math. Soc. 367(9), 6719–6749 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Bolsinov, A.V., Matveev, V.S., Mettler, T., Rosemann, S.: Four-dimensional Kähler metrics admitting c-projective vector fields. J. Math. Pure Appl. 103(3), 619–657 (2015)

    MATH  Google Scholar 

  9. Branson, T., Čap, A., Eastwood, M., Gover, A.R.: Prolongations of geometric overdetermined systems. Int. J. Math. 17(6), 641–664 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Branson, T., Gover, A.R.: Conformally invariant non-local operators. Pac. J. Math. 201, 19–60 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Bryant, R., Dunajski, M., Eastwood, M.: Metrisability of two-dimensional projective structures. J. Differ. Geom. 83(3), 465–499 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Calderbank, D., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537, 67–103 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Calderbank, D.M.J., Eastwood, M.G., Matveev, V.S., Neusser, K.: C-projective geometry. Mem. Am. Math. Soc. 267(1299), v+137 (2020)

    MATH  Google Scholar 

  14. Calderbank, D.M.J., Matveev, V.S., Rosemann, S.: Curvature and the c-projective mobility of Kähler metrics with hamiltonian \(2\)-forms. Comp. Math. 152(8), 1555–1575 (2016)

    MATH  Google Scholar 

  15. Čap, A., Gover, A.R.: Standard tractors and the conformal ambient metric construction. Ann. Glob. Anal. Geom. 24, 231–259 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Čap, A., Gover, A.R.: Scalar curvature and projective compactness. J. Geom. Phys. 98, 475–481 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Čap, A., Gover, A.R.: C-projective compactification; (quasi)-Kähler metrics and CR boundaries. Am. J. Math. 141(3), 813–856 (2019)

    MATH  Google Scholar 

  18. Čap, A., Gover, A.R.: Projective compactifications and Einstein metrics. J. Reine Angew. Math. 717, 47–75 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Čap, A., Gover, A.R.: Projective compactness and conformal boundaries. Math. Ann. 366(3–4), 1587–1620 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Čap, A., Gover, A.R., Hammerl, M.: Projective BGG equations, algebraic sets, and compactifications of Einstein geometries. J. Lond. Math. Soc. 86(2), 433–454 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Čap, A., Gover, A.R., Hammerl, M.: Holonomy reductions of Cartan geometries and curved orbit decompositions. Duke Math. J. 163(5), 1035–1070 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Čap, A., Gover, A.R., Macbeth, H.R.: Einstein metrics in projective geometry. Geom. Dedicata 168, 235–244 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Čap, A., Slovák, J.: Parabolic geometries: background and general theory (Mathematical Surveys and Monographs), vol. 154. (Providence, RI, American Mathematical Society). (2009)

  24. Čap, A., Slovák, J., Souček, V.: Bernstein-Gelfand-Gelfand sequences. Ann. Math. 154(1), 97–113 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Čap, A., Souček, V.: Curved Casimir operators and the BGG machinery. SIGMA Symmetry Integr. Geom. Methods Appl. 3, 111, 17 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Curry, S., Gover, A.R.: An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity. Asymptot. Anal. Gen. Relativ. 443, 86 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Curry, S.N., Gover, A.R.: CR Embedded submanifolds of CR manifolds. Memoirs of the American Math Society, 258(1241), (2019)

  28. Derdzinski, A.: Zeros of conformal fields in any metric signature. Class. Quantum Gravity 28(7), 075011, 23 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Dunajski, M., Eastwood, M.: Metrisability of three-dimensional path geometries. Eur. J. Math. 2(3), 809–834 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Eastwood, M., Matveev, V.: Metric connections in projective differential geometry. Symmetries and overdetermined systems of partial differential equations, 339–350, IMA Vol. Math. Appl., 144, Springer, New York, (2008)

  31. Fedorova, A., Kiosak, V., Matveev, V., Rosemann, S.: The only Kähler manifold with degree of mobility at least \(3\) is \((CP (n), g_{Fubini-Study})\). Proc. Lond. Math. Soc. 105, 153–188 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Fedorova, A., Matveev, V.S.: Degree of mobility for metrics of Lorentzian signature and parallel (0,2)-tensor fields on cone manifolds. Proc. Lond. Math. Soc. 108(5), 1277–1312 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Fefferman, C., Graham, C.R.: The ambient metric (AM-178). Princeton University Press, Princeton, NJ (2012)

    MATH  Google Scholar 

  34. Flood, K.J., Gover, A.R.: Metrics in projective differential geometry: the geometry of solutions to the metrizability equation. J. Geom. Anal. 29(3), 2492–2525 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Frost, G.E.: The projective parabolic geometry of Riemannian, Kähler and Quaternion-Kähler metrics. arXiv:1605.04406

  36. Gover, A.R., Graham, C.R.: CR Invariant powers of the sub-Laplacian. J. Reiene Angew. Math. 583, 1–27 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Gover, A.R., Latini, E., Waldron, A.: Poincare-Einstein holography for forms via conformal geometry in the bulk. Mem. Am. Math. Soc. 235(1106), vi+95 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Gover, A.R., Latini, E., Waldron, A.: Metric projective geometry, BGG detour complexes and partially massless gauge theories. Comm. Math. Phys. 341(2), 667–697 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Gover, A.R., Macbeth, H.R.: Detecting Einstein geodesics: Einstein metrics in projective and conformal geometry. Differ. Geom. Appl. 33, 44–69 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Gover, A.R., Matveev, V.: Projectively related metrics, Weyl nullity, and metric projectively invariant equations. Proc. Lond. Math. Soc. 114(2), 242–292 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Gover, A.R., Neusser, K., Willse, T.: Projective geometry of Sasaki-Einstein structures and their compactifications. Diss. Math. 546, 64 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Gover, A.R., Panai, R., Willse, T.: Nearly Kähler geometry and \((2,3,5)\)-distributions via projective holonomy. Indiana Univ. Math. J. 66(4), 1351–1416 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Gover, A.R., Porath, S.: A work in progress on projective hypersurfaces

  44. Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152(1), 89–118 (2003)

    MathSciNet  MATH  Google Scholar 

  45. Gray, A., Hervella, L.M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123, 35–58 (1980)

    MathSciNet  MATH  Google Scholar 

  46. Jezierski, J.: Conformal Yano-Killing tensors in anti-de Sitter spacetime. Classical Quantum Gravity 25(6), 065010, 17 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Juhl, A.: Families of conformally covariant differential operators, Q-curvature and holography. Springer, Basel (2009)

    MATH  Google Scholar 

  48. Jung, J., Zelditch, S.: Number of nodal domains and singular points of eigenfunctions of negatively curved surfaces with an isometric involution. J. Differ. Geom. 102(1), 37–66 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Kazdan, J.L., Warner, F.W.: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures. Ann. Math. 101, 317–331 (1975)

    MathSciNet  MATH  Google Scholar 

  50. Kazdan, J.L., Warner, F.W.: Scalar curvature and conformal deformation of Riemannian structure. J. Differ. Geom. 10, 113–134 (1975)

    MathSciNet  MATH  Google Scholar 

  51. Kruglikov, B., Matveev, V.S., The, D.: Submaximally symmetric c-projective structures. Int. J. Math. 27, 1650022, 34 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Kolář, M., Michor, P., Slovák, J.: Natural operations in differential geometry, p. x+434. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  53. Kruglikov, B., Matveev, V.S.: The geodesic flow of a generic metric does not admit nontrivial integrals polynomial in momenta. Nonlinearity 29(6), 1755–1768 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Leitner, F.: About twistor spinors with zero in Lorentzian geometry. SIGMA Symmetry Integr. Geom. Methods Appl. 5, 079, 12 (2009)

    MathSciNet  MATH  Google Scholar 

  55. Lichnerowicz, A.: Théorie globale des connexions et des groupes d’holonomie Roma, Edizioni Cremonese (1955)

  56. Lischewski, A.: The zero set of a twistor spinor in any metric signature. Rend. Circ. Mat. Palermo 64(2), 177–201 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Marugame, T.: Volume Renormalization for the Blaschke Metric on Strictly Convex Domains. J. Geom. Anal. 28(1), 510–545 (2018)

    MathSciNet  MATH  Google Scholar 

  58. Matveev, V.S.: Projective Lichnerowicz-Obata conjecture. J. Diff. Geom. 75, 459–502 (2007)

    MathSciNet  MATH  Google Scholar 

  59. Matveev, V.S.: On projective equivalence and pointwise projective relation of Randers metrics. Int. J. Math. 23(9), 1250093, 14 (2012)

    MathSciNet  MATH  Google Scholar 

  60. Matveev, V.S.: Geodesically equivalent metrics in general relativity. J. Geom. Phys. 62(3), 675–691 (2012)

    MathSciNet  MATH  Google Scholar 

  61. Matveev, V.S., Rosemann, S.: Proof of the Yano-Obata Conjecture for holomorph-projective transformations. J. Diff. Geom. 92, 221–261 (2012)

    MATH  Google Scholar 

  62. Matveev, V.S., Rosemann, S.: The degree of mobility of Einstein metrics. J. Geom. Phys. 99, 42–56 (2016)

    MathSciNet  MATH  Google Scholar 

  63. Mazzeo, R.R., Melrose, R.B.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75(2), 260–310 (1987)

    MathSciNet  MATH  Google Scholar 

  64. Mettler, T.: On Kähler metrisability of two-dimensional complex projective structures. Monatshefte Math. 174(4), 599–616 (2014)

    MathSciNet  MATH  Google Scholar 

  65. Mettler, T.: Weyl metrisability of two-dimensional projective structures. Math. Proc. Camb. Philos. Soc. 156(1), 99–113 (2014)

    MathSciNet  MATH  Google Scholar 

  66. Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci. 89, 1334–1353 (1998)

    MathSciNet  MATH  Google Scholar 

  67. Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78, 311–333 (1996)

    MathSciNet  MATH  Google Scholar 

  68. Otsuki, T., Tashiro, Y.: On curves in Kählerian spaces. Math. J. Okayama Univ. 4, 57–78 (1954)

    MathSciNet  MATH  Google Scholar 

  69. Papadopoulos, G.: Killing-Yano equations and G structures. Class. Quantum Gravity 25(10), 105016, 8 (2008)

    MathSciNet  MATH  Google Scholar 

  70. Penrose, R., Rindler, W.: Spinors and space-time, vol. 1. Cambridge University Press (1984)

    MATH  Google Scholar 

  71. Sharpe, R.W.: Cartan’s generalization of Klein’s Erlangen program, p. 426. Springer, New York (1997)

    MATH  Google Scholar 

  72. Sinjukov, N.S.: Geodesic mappings of Riemannian spaces. (Russian) [Geodesic mappings of Riemannian spaces] “Nauka”, Moscow, (1979)

  73. Tanaka, N.: A differential geometric study on strongly pseudo-convex manifolds. Lectures in Mathematics, Department of Mathematics, Kyoto University, No.9. Kinokuniya Book-Store Co., Ltd., Tokyo, (1975)

  74. Tanno, S.: Some differential equations on Riemannian manifolds. J. Math. Soc. Jpn. 30, 509–531 (1978)

    MathSciNet  MATH  Google Scholar 

  75. Zelditch, S.: Local and global analysis of eigenfunctions on Riemannian manifolds. Handbook of geometric analysis. International Press, Somerville, MA, (2008)

  76. Zelditch, S.: Eigenfunctions and nodal sets. Surveys in differential geometry. Geometry and topology. International Press, Somerville, MA, (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keegan J. Flood.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

K. J. Flood gratefully acknowledges support from the Czech Science Foundation (GAČR) Grant 20-11473S and A. R. Gover gratefully acknowledges support from the Royal Society of New Zealand via Marsden Grants 16-UOA-051 and 19-UOA-008.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flood, K.J., Gover, A.R. Geometry of solutions to the c-projective metrizability equation. Annali di Matematica 202, 1343–1368 (2023). https://doi.org/10.1007/s10231-022-01283-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-022-01283-x

Keywords

Mathematics Subject Classification

Navigation